BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

445 related articles for article (PubMed ID: 12668482)

  • 21. Mitochondrial VDAC, the Na
    Shoshan-Barmatz V; De S
    Adv Exp Med Biol; 2017; 981():323-347. PubMed ID: 29594867
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial Bioenergetics During Ischemia and Reperfusion.
    Consolini AE; Ragone MI; Bonazzola P; Colareda GA
    Adv Exp Med Biol; 2017; 982():141-167. PubMed ID: 28551786
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes.
    Maack C; Cortassa S; Aon MA; Ganesan AN; Liu T; O'Rourke B
    Circ Res; 2006 Jul; 99(2):172-82. PubMed ID: 16778127
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Control and regulation of integrated mitochondrial function in metabolic and transport networks.
    Cortassa S; O'Rourke B; Winslow RL; Aon MA
    Int J Mol Sci; 2009 Apr; 10(4):1500-1513. PubMed ID: 19468321
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mathematical simulation of membrane processes and metabolic fluxes of the pancreatic beta-cell.
    Diederichs F
    Bull Math Biol; 2006 Oct; 68(7):1779-818. PubMed ID: 16832733
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cardiac energy metabolism homeostasis: role of cytosolic calcium.
    Balaban RS
    J Mol Cell Cardiol; 2002 Oct; 34(10):1259-71. PubMed ID: 12392982
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics.
    Wei AC; Liu T; O'Rourke B
    J Biol Chem; 2015 Jun; 290(26):16088-98. PubMed ID: 25963147
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes.
    Kohlhaas M; Maack C
    Circulation; 2010 Nov; 122(22):2273-80. PubMed ID: 21098439
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Calcium release microdomains and mitochondria.
    Kohlhaas M; Maack C
    Cardiovasc Res; 2013 May; 98(2):259-68. PubMed ID: 23417042
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simulation of cardiac work transitions, in vitro: effects of simultaneous Ca2+ and ATPase additions on isolated porcine heart mitochondria.
    Territo PR; French SA; Balaban RS
    Cell Calcium; 2001 Jul; 30(1):19-27. PubMed ID: 11396984
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mitochondrial energetic metabolism: a simplified model of TCA cycle with ATP production.
    Nazaret C; Heiske M; Thurley K; Mazat JP
    J Theor Biol; 2009 Jun; 258(3):455-64. PubMed ID: 19007794
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Numerical modelling of the effects of cold atmospheric plasma on mitochondrial redox homeostasis and energy metabolism.
    Murakami T
    Sci Rep; 2019 Nov; 9(1):17138. PubMed ID: 31748630
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Calcium activation of heart mitochondrial oxidative phosphorylation: rapid kinetics of mVO2, NADH, AND light scattering.
    Territo PR; French SA; Dunleavy MC; Evans FJ; Balaban RS
    J Biol Chem; 2001 Jan; 276(4):2586-99. PubMed ID: 11029457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial energetics and calcium coupling in the heart.
    Kohlhaas M; Nickel AG; Maack C
    J Physiol; 2017 Jun; 595(12):3753-3763. PubMed ID: 28105746
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Computational modeling of mitochondrial K
    Cortassa S; Aon MA; Juhaszova M; Kobrinsky E; Zorov DB; Sollott SJ
    J Mol Cell Cardiol; 2022 Apr; 165():9-18. PubMed ID: 34954465
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial dysfunctions in cancer: genetic defects and oncogenic signaling impinging on TCA cycle activity.
    Desideri E; Vegliante R; Ciriolo MR
    Cancer Lett; 2015 Jan; 356(2 Pt A):217-23. PubMed ID: 24614286
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tricarboxylic acid cycle intermediate pool size: functional importance for oxidative metabolism in exercising human skeletal muscle.
    Bowtell JL; Marwood S; Bruce M; Constantin-Teodosiu D; Greenhaff PL
    Sports Med; 2007; 37(12):1071-88. PubMed ID: 18027994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. SR and mitochondria: calcium cross-talk between kissing cousins.
    Dorn GW; Maack C
    J Mol Cell Cardiol; 2013 Feb; 55():42-9. PubMed ID: 22902320
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolite regulation of the mitochondrial calcium uniporter channel.
    Tomar D; Elrod JW
    Cell Calcium; 2020 Dec; 92():102288. PubMed ID: 32956979
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Substrate specific effects of calcium on metabolism of rat heart mitochondria.
    Panov AV; Scaduto RC
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1398-406. PubMed ID: 8967382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.