These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 1266963)

  • 21. The blood-brain barrier. Transport across the cerebral endothelium.
    Bradbury MW
    Circ Res; 1985 Aug; 57(2):213-22. PubMed ID: 2410161
    [No Abstract]   [Full Text] [Related]  

  • 22. The rate of cerebral utilization of glucose, ketone bodies, and oxygen: a comparative in vivo study of infant and adult rats.
    Dahlquist G; Persson B
    Pediatr Res; 1976 Nov; 10(11):910-7. PubMed ID: 980550
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Permeability characteristics of brain adjacent to tumors in rats.
    Levin VA; Freeman-Dove M; Landahl HD
    Arch Neurol; 1975 Dec; 32(12):785-91. PubMed ID: 1203030
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regional glucose and beta-hydroxybutyrate use by developing rat brain.
    Miller AL
    Metab Brain Dis; 1986 Mar; 1(1):53-61. PubMed ID: 3508236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Application of quantitative autoradiography to the measurement of brain function activity in rats during post-natal development].
    Nehlig A; Pereira de Vasconcelos A; Boyet S
    Bull Assoc Anat (Nancy); 1991 Jun; 75(229):101-4. PubMed ID: 1777693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diet-induced ketosis increases capillary density without altered blood flow in rat brain.
    Puchowicz MA; Xu K; Sun X; Ivy A; Emancipator D; LaManna JC
    Am J Physiol Endocrinol Metab; 2007 Jun; 292(6):E1607-15. PubMed ID: 17284577
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Influence of gamma-hydroxybutyrate on the relationship between local cerebral glucose utilization and local cerebral blood flow in the rat brain.
    Kuschinsky W; Suda S; Sokoloff L
    J Cereb Blood Flow Metab; 1985 Mar; 5(1):58-64. PubMed ID: 3972924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fuel utilization by early newborn brain is preserved under congenital hypothyroidism in the rat.
    Almeida A; González-Buitrago JM; Bolaños JP; Medina JM
    Pediatr Res; 1996 Sep; 40(3):410-4. PubMed ID: 8865277
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of regional blood-brain barrier transport of L-leucine in Brattleboro rats.
    Brust P; Zicha J
    Biomed Biochim Acta; 1988; 47(12):1013-21. PubMed ID: 3254149
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nutrient transport and the blood-brain barrier in developing animals.
    Cornford EM; Cornford ME
    Fed Proc; 1986 Jun; 45(7):2065-72. PubMed ID: 2872083
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of the nootropic AWD 52-39 on the blood-brain transfer of leucine, choline and glucose in rats after 14-d exposure to ethanol.
    Brust P; Jordan K
    Pharmazie; 1992 Aug; 47(8):616-20. PubMed ID: 1438514
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport of 3-hydroxy[3-14C]butyrate by dissociated cells from rat brain.
    Tildon JT; Roeder LM
    Am J Physiol; 1988 Aug; 255(2 Pt 1):C133-9. PubMed ID: 3407758
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fasting plasma levels of glucose, acetoacetate, D-beta-hydroxybutyrate, glycerol, and lactate in the baboon infant: correlation with cerebral uptake of substrates and oxygen.
    Levitsky LL; Fisher DE; Paton JB; Delannoy CW
    Pediatr Res; 1977 Apr; 11(4):298-302. PubMed ID: 403503
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Studies on the relationship between cerebral glucose transport and phosphorylation using 2-deoxyglucose.
    Hargreaves RJ; Planas AM; Cremer JE; Cunningham VJ
    J Cereb Blood Flow Metab; 1986 Dec; 6(6):708-16. PubMed ID: 3793806
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cerebral acidosis in focal ischemia: I. A method for the simultaneous measurement of local cerebral pH with cerebral glucose utilization or cerebral blood flow in the rat.
    Hakim AM; Arrieta M
    J Cereb Blood Flow Metab; 1986 Dec; 6(6):667-75. PubMed ID: 3793802
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Kinetics of unidirectional leucine transport into brain: effects of isoleucine, valine, and anoxia.
    Betz AL; Gilboe DD; Drewes LR
    Am J Physiol; 1975 Mar; 228(3):895-900. PubMed ID: 1090191
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Utilization of D-beta-hydroxybutyrate and oleate as alternate energy fuels in brain cell cultures of newborn mice after hypoxia at different glucose concentrations.
    Bossi E; Kohler E; Herschkowitz N
    Pediatr Res; 1989 Nov; 26(5):478-81. PubMed ID: 2510120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Valine entry into rat brain after diet-induced changes in plasma amino acids.
    Tews JK; Greenwood J; Pratt OE; Harper AE
    Am J Physiol; 1987 Jan; 252(1 Pt 2):R78-84. PubMed ID: 3812733
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regional blood-brain barrier transport of ketone bodies in portacaval-shunted rats.
    Hawkins RA; Mans AM
    Am J Physiol; 1991 Nov; 261(5 Pt 1):E647-52. PubMed ID: 1951691
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fetal fuels. IV. Regulation of branched-chain amino and keto acid metabolism in fetal brain.
    Shambaugh GE; Koehler RA
    Am J Physiol; 1981 Sep; 241(3):E200-7. PubMed ID: 7282922
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.