These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Single-channel analysis of KCNQ K+ channels reveals the mechanism of augmentation by a cysteine-modifying reagent. Li Y; Gamper N; Shapiro MS J Neurosci; 2004 Jun; 24(22):5079-90. PubMed ID: 15175377 [TBL] [Abstract][Full Text] [Related]
26. Two types of K(+) channel subunit, Erg1 and KCNQ2/3, contribute to the M-like current in a mammalian neuronal cell. Selyanko AA; Hadley JK; Wood IC; Abogadie FC; Delmas P; Buckley NJ; London B; Brown DA J Neurosci; 1999 Sep; 19(18):7742-56. PubMed ID: 10479678 [TBL] [Abstract][Full Text] [Related]
27. Dominant-negative subunits reveal potassium channel families that contribute to M-like potassium currents. Selyanko AA; Delmas P; Hadley JK; Tatulian L; Wood IC; Mistry M; London B; Brown DA J Neurosci; 2002 Mar; 22(5):RC212. PubMed ID: 11880533 [TBL] [Abstract][Full Text] [Related]
28. Antibodies and a cysteine-modifying reagent show correspondence of M current in neurons to KCNQ2 and KCNQ3 K+ channels. Roche JP; Westenbroek R; Sorom AJ; Hille B; Mackie K; Shapiro MS Br J Pharmacol; 2002 Dec; 137(8):1173-86. PubMed ID: 12466226 [TBL] [Abstract][Full Text] [Related]
29. Electrostatic interaction of internal Mg2+ with membrane PIP2 Seen with KCNQ K+ channels. Suh BC; Hille B J Gen Physiol; 2007 Sep; 130(3):241-56. PubMed ID: 17724161 [TBL] [Abstract][Full Text] [Related]
31. Kinetics of PIP2 metabolism and KCNQ2/3 channel regulation studied with a voltage-sensitive phosphatase in living cells. Falkenburger BH; Jensen JB; Hille B J Gen Physiol; 2010 Feb; 135(2):99-114. PubMed ID: 20100891 [TBL] [Abstract][Full Text] [Related]
32. Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. Shen W; Hamilton SE; Nathanson NM; Surmeier DJ J Neurosci; 2005 Aug; 25(32):7449-58. PubMed ID: 16093396 [TBL] [Abstract][Full Text] [Related]
33. Phosphatidylinositol-4,5-bisphosphate, PIP2, controls KCNQ1/KCNE1 voltage-gated potassium channels: a functional homology between voltage-gated and inward rectifier K+ channels. Loussouarn G; Park KH; Bellocq C; Baró I; Charpentier F; Escande D EMBO J; 2003 Oct; 22(20):5412-21. PubMed ID: 14532114 [TBL] [Abstract][Full Text] [Related]
34. Molecular correlates of the M-current in cultured rat hippocampal neurons. Shah M; Mistry M; Marsh SJ; Brown DA; Delmas P J Physiol; 2002 Oct; 544(Pt 1):29-37. PubMed ID: 12356878 [TBL] [Abstract][Full Text] [Related]
35. Alpha1-adrenoceptor-mediated breakdown of phosphatidylinositol 4,5-bisphosphate inhibits pinacidil-activated ATP-sensitive K+ currents in rat ventricular myocytes. Haruna T; Yoshida H; Nakamura TY; Xie LH; Otani H; Ninomiya T; Takano M; Coetzee WA; Horie M Circ Res; 2002 Aug; 91(3):232-9. PubMed ID: 12169649 [TBL] [Abstract][Full Text] [Related]
36. Differential expression of kcnq2 splice variants: implications to m current function during neuronal development. Smith JS; Iannotti CA; Dargis P; Christian EP; Aiyar J J Neurosci; 2001 Feb; 21(4):1096-103. PubMed ID: 11160379 [TBL] [Abstract][Full Text] [Related]
37. Modulation of cyclic nucleotide-regulated HCN channels by PIP(2) and receptors coupled to phospholipase C. Pian P; Bucchi A; Decostanzo A; Robinson RB; Siegelbaum SA Pflugers Arch; 2007 Oct; 455(1):125-45. PubMed ID: 17605039 [TBL] [Abstract][Full Text] [Related]