BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 12670488)

  • 1. A gene cluster involved in pyrimidine reductive catabolism from Brevibacillus agri NCHU1002.
    Kao CH; Hsu WH
    Biochem Biophys Res Commun; 2003 Apr; 303(3):848-54. PubMed ID: 12670488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pyrimidine catabolism in Pseudomonas aeruginosa.
    Kim S; West TP
    FEMS Microbiol Lett; 1991 Jan; 61(2-3):175-9. PubMed ID: 1903745
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pseudomonas putida PydR, a RutR-like transcriptional regulator, represses the dihydropyrimidine dehydrogenase gene in the pyrimidine reductive catabolic pathway.
    Hidese R; Mihara H; Kurihara T; Esaki N
    J Biochem; 2012 Oct; 152(4):341-6. PubMed ID: 22782928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular characterization of pyrimidine biosynthesis genes from the thermophile Bacillus caldolyticus.
    Ghim SY; Nielsen P; Neuhard J
    Microbiology (Reading); 1994 Mar; 140 ( Pt 3)():479-91. PubMed ID: 7516791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The pyrimidine biosynthesis operon of the thermophile Bacillus caldolyticus includes genes for uracil phosphoribosyltransferase and uracil permease.
    Ghim SY; Neuhard J
    J Bacteriol; 1994 Jun; 176(12):3698-707. PubMed ID: 8206848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pyrimidine base and ribonucleoside catabolic enzyme activities of the Pseudomonas diminuta group.
    West TP
    FEMS Microbiol Lett; 1992 Dec; 78(2-3):305-10. PubMed ID: 1490615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptional analysis and regulatory signals of the hom-thrB cluster of Brevibacterium lactofermentum.
    Mateos LM; Pisabarro A; Pátek M; Malumbres M; Guerrero C; Eikmanns BJ; Sahm H; Martín JF
    J Bacteriol; 1994 Dec; 176(23):7362-71. PubMed ID: 7961509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular analysis of the nitrile catabolism operon of the thermophile Bacillus pallidus RAPc8.
    Cameron RA; Sayed M; Cowan DA
    Biochim Biophys Acta; 2005 Aug; 1725(1):35-46. PubMed ID: 15955632
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of pyrimidine catabolism in Drosophila melanogaster using epistatic interactions with mutations of pyrimidine biosynthesis and beta-alanine metabolism.
    Rawls JM
    Genetics; 2006 Mar; 172(3):1665-74. PubMed ID: 16361227
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel hydantoinase process using recombinant Escherichia coli cells with dihydropyrimidinase and L-N-carbamoylase activities as biocatalyst for the production of L-homophenylalanine.
    Kao CH; Lo HH; Hsu SK; Hsu WH
    J Biotechnol; 2008 Apr; 134(3-4):231-9. PubMed ID: 18342972
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A ferredoxin-dependent dihydropyrimidine dehydrogenase in Clostridium chromiireducens.
    Wang F; Wei Y; Lu Q; Ang EL; Zhao H; Zhang Y
    Biosci Rep; 2020 Jul; 40(7):. PubMed ID: 32614053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New gene cluster from the thermophile Bacillus fordii MH602 in the conversion of DL-5-substituted hydantoins to L-amino acids.
    Mei YZ; Wan YM; He BF; Ying HJ; Ouyang PK
    J Microbiol Biotechnol; 2009 Dec; 19(12):1497-505. PubMed ID: 20075610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porcine recombinant dihydropyrimidine dehydrogenase: comparison of the spectroscopic and catalytic properties of the wild-type and C671A mutant enzymes.
    Rosenbaum K; Jahnke K; Curti B; Hagen WR; Schnackerz KD; Vanoni MA
    Biochemistry; 1998 Dec; 37(50):17598-609. PubMed ID: 9860876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional analysis of the pyrimidine catabolic pathway in Arabidopsis.
    Zrenner R; Riegler H; Marquard CR; Lange PR; Geserick C; Bartosz CE; Chen CT; Slocum RD
    New Phytol; 2009; 183(1):117-132. PubMed ID: 19413687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of two gene clusters involved in cyclohexanone oxidation in Brevibacterium epidermidis strain HCU.
    Brzostowicz PC; Blasko MS; Rouvière PE
    Appl Microbiol Biotechnol; 2002 May; 58(6):781-9. PubMed ID: 12021799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterization of a gene cluster involved in manganese oxidation by spores of the marine Bacillus sp. strain SG-1.
    van Waasbergen LG; Hildebrand M; Tebo BM
    J Bacteriol; 1996 Jun; 178(12):3517-30. PubMed ID: 8655549
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyrimidine base and ribonucleoside utilization by the Pseudomonas alcaligenes group.
    West TP
    Antonie Van Leeuwenhoek; 1991 May; 59(4):263-8. PubMed ID: 1883229
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular cloning and transcriptional analysis of a guanosine kinase gene of Brevibacterium acetylicum ATCC 953.
    Usuda Y; Kawasaki H; Shimaoka M; Utagawa T
    J Bacteriol; 1997 Nov; 179(22):6959-64. PubMed ID: 9371440
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amidohydrolases of the reductive pyrimidine catabolic pathway purification, characterization, structure, reaction mechanisms and enzyme deficiency.
    Schnackerz KD; Dobritzsch D
    Biochim Biophys Acta; 2008 Mar; 1784(3):431-44. PubMed ID: 18261476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pyrimidine catabolism: individual characterization of the three sequential enzymes with a new assay.
    Traut TW; Loechel S
    Biochemistry; 1984 May; 23(11):2533-9. PubMed ID: 6433973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.