These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 12670800)

  • 1. Variation in needle longevity of Pinus tabulaeformis forests at different geographic scales.
    Xiao Y
    Tree Physiol; 2003 May; 23(7):463-71. PubMed ID: 12670800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation in needle longevity is related to needle-fascicle production rate in Pinus sylvestris.
    Pensa M; Jalkanen R
    Tree Physiol; 2005 Oct; 25(10):1265-71. PubMed ID: 16076775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparing the influence of site quality, stand age, fire and climate on aboveground tree production in Siberian Scots pine forests.
    Wirth C; Schulze ED; Kusznetova V; Milyukova I; Hardes G; Siry M; Schulze B; Vygodskaya NN
    Tree Physiol; 2002 Jun; 22(8):537-52. PubMed ID: 12045026
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biogeographic variation in evergreen conifer needle longevity and impacts on boreal forest carbon cycle projections.
    Reich PB; Rich RL; Lu X; Wang YP; Oleksyn J
    Proc Natl Acad Sci U S A; 2014 Sep; 111(38):13703-8. PubMed ID: 25225397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nutrient conservation increases with latitude of origin in European Pinus sylvestris populations.
    Oleksyn J; Reich PB; Zytkowiak R; Karolewski P; Tjoelker MG
    Oecologia; 2003 Jul; 136(2):220-35. PubMed ID: 12756524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatial structural characteristics of forests dominated by Pinus tabulaeformis Carr.
    Zhang L; Hui G; Hu Y; Zhao Z
    PLoS One; 2018; 13(4):e0194710. PubMed ID: 29652916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site fertility and the morphological and photosynthetic acclimation of Pinus sylvestris needles to light.
    Niinemets U; Ellsworth DS; Lukjanova A; Tobias M
    Tree Physiol; 2001 Nov; 21(17):1231-44. PubMed ID: 11696411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regeneration of Pinus pinaster Aiton after prescribed fires: Response to burn timing and biogeographical seed provenance across a climatic gradient.
    Sagra J; Ferrandis P; Plaza-Álvarez PA; Lucas-Borja ME; González-Romero J; Alfaro-Sánchez R; De Las Heras J; Moya D
    Sci Total Environ; 2018 Oct; 637-638():1550-1558. PubMed ID: 29801248
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geographical variation and the role of climate in leaf traits of a relict tree species across its distribution in China.
    Meng H; Wei X; Franklin SB; Wu H; Jiang M
    Plant Biol (Stuttg); 2017 Jul; 19(4):552-561. PubMed ID: 28294500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fingerprint of climate change across pine forests of Sweden.
    Oleksyn J; Wyka TP; Żytkowiak R; Zadworny M; Mucha J; Dering M; Ufnalski K; Nihlgård B; Reich PB
    Ecol Lett; 2020 Dec; 23(12):1739-1746. PubMed ID: 32856759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Response of radial growth to climate change in Pinus koraiensis with different diameter classes].
    Liu M; Mao ZJ; Li Y; Xia ZY
    Ying Yong Sheng Tai Xue Bao; 2018 Nov; 29(11):3530-3540. PubMed ID: 30460799
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrating within-crown variation in net photosynthesis in loblolly and slash pine families.
    McGarvey RC; Martin TA; White TL
    Tree Physiol; 2004 Nov; 24(11):1209-20. PubMed ID: 15339730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sapling leaf trait responses to light, tree height and soil nutrients for three conifer species of contrasting shade tolerance.
    Lilles EB; Astrup R; Lefrançois ML; David Coates K
    Tree Physiol; 2014 Dec; 34(12):1334-47. PubMed ID: 25422385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stomatal conductance alone does not explain the decline in foliar photosynthetic rates with increasing tree age and size in Picea abies and Pinus sylvestris.
    Niinemets U
    Tree Physiol; 2002 Jun; 22(8):515-35. PubMed ID: 12045025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Minimum cuticular conductance and cuticle features of Picea abies and Pinus cembra needles along an altitudinal gradient in the Dolomites (NE Italian Alps).
    Anfodillo T; Pasqua di Bisceglie D; Urso T
    Tree Physiol; 2002 May; 22(7):479-87. PubMed ID: 11986051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests.
    Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P
    Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Connections between climatic variables and the growth and needle dynamics of Scots pine (Pinus sylvestris L.) in Estonia and Lapland.
    Pensa M; Sepp M; Jalkanen R
    Int J Biometeorol; 2006 Mar; 50(4):205-14. PubMed ID: 16331502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Response of Korean pine's functional traits to geography and climate.
    Dong Y; Liu Y
    PLoS One; 2017; 12(9):e0184051. PubMed ID: 28886053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomass and biomass change in lodgepole pine stands in Alberta.
    Monserud RA; Huang S; Yang Y
    Tree Physiol; 2006 Jun; 26(6):819-31. PubMed ID: 16510398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrasting growth forecasts across the geographical range of Scots pine due to altitudinal and latitudinal differences in climatic sensitivity.
    Matías L; Linares JC; Sánchez-Miranda Á; Jump AS
    Glob Chang Biol; 2017 Oct; 23(10):4106-4116. PubMed ID: 28100041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.