These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 12670801)

  • 1. Characterization of a type II chlorophyll a/b-binding protein gene (Lhcb2*Pp1) in peach. II. mRNA abundance in developing leaves exposed to sun or shade.
    Bassett CL; Callahan AM
    Tree Physiol; 2003 May; 23(7):473-80. PubMed ID: 12670801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leaf senescence and late-season net photosynthesis of sun and shade leaves of overstory sweetgum (Liquidambar styraciflua) grown in elevated and ambient carbon dioxide concentrations.
    Herrick JD; Thomas RB
    Tree Physiol; 2003 Feb; 23(2):109-18. PubMed ID: 12533305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Variation in light-intercepting area and photosynthetic rate of sun and shade shoots of two Picea species in relation to the angle of incoming light.
    Ishii H; Hamada Y; Utsugi H
    Tree Physiol; 2012 Oct; 32(10):1227-36. PubMed ID: 23077118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fruit load and canopy shading affect leaf characteristics and net gas exchange of 'Spring' navel orange trees.
    Syvertsen JP; Goñi C; Otero A
    Tree Physiol; 2003 Sep; 23(13):899-906. PubMed ID: 14532013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Seasonal effects of deficit irrigation on leaf photosynthetic traits of fruiting and non-fruiting shoots in almond trees.
    Nortes PA; Gonzalez-Real MM; Egea G; Baille A
    Tree Physiol; 2009 Mar; 29(3):375-88. PubMed ID: 19203958
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developmental and reproductive performance of a specialist herbivore depend on seasonality of, and light conditions experienced by, the host plant.
    Uyi OO; Zachariades C; Heshula LU; Hill MP
    PLoS One; 2018; 13(1):e0190700. PubMed ID: 29304104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The phyllochron of well-watered and water deficit mature peach trees varies with shoot type and vigour.
    Davidson A; Da Silva D; DeJong TM
    AoB Plants; 2017 Sep; 9(5):plx042. PubMed ID: 29026512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of light availability on leaf gas exchange and expansion in lychee (Litchi chinensis).
    Hieke S; Menzel CM; Lüdders P
    Tree Physiol; 2002 Dec; 22(17):1249-56. PubMed ID: 12464578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The functional ecology of shoot architecture in sun and shade plants of Heteromeles arbutifolia M. Roem., a Californian chaparral shrub.
    Valladares F; Pearcy RW
    Oecologia; 1998 Mar; 114(1):1-10. PubMed ID: 28307546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leaf gas exchange, chlorophyll fluorescence and pigment indexes of Eugenia uniflora L. in response to changes in light intensity and soil flooding.
    Mielke MS; Schaffer B
    Tree Physiol; 2010 Jan; 30(1):45-55. PubMed ID: 19923194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of light acclimation during and after foliage expansion on photosynthesis ofAbies amabilis foliage within the canopy.
    Brooks JR; Sprugel DG; Hinckley TM
    Oecologia; 1996 Mar; 107(1):21-32. PubMed ID: 28307188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbon autonomy of peach shoots determined by (13)C-photoassimilate transport.
    Volpe G; Lo Bianco R; Rieger M
    Tree Physiol; 2008 Dec; 28(12):1805-12. PubMed ID: 19193563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shoot growth responses to light microenvironment and correlative inhibition in tree seedlings under a forest canopy.
    Takenaka A
    Tree Physiol; 2000 Aug; 20(14):987-91. PubMed ID: 11303574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A minimal peach type II chlorophyll a/b-binding protein promoter retains tissue-specificity and light regulation in tomato.
    Bassett CL; Callahan AM; Artlip TS; Scorza R; Srinivasan C
    BMC Biotechnol; 2007 Aug; 7():47. PubMed ID: 17697347
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Developmental and light-regulated expression of individual members of the light-harvesting complex b gene family in Pinus palustris.
    Peer W; Silverthorne J; Peters JL
    Plant Physiol; 1996 Jun; 111(2):627-34. PubMed ID: 8787030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Current-year and subsequent-year effects of crop-load manipulation and epicormic-shoot removal on distribution of long, short and epicormic shoot growth in Prunus persica.
    Gordon D; Dejong TM
    Ann Bot; 2007 Feb; 99(2):323-32. PubMed ID: 17218345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Preformation in vegetative buds of Prunus persica: factors influencing number of leaf primordia in overwintering buds.
    Gordon D; Damiano C; DeJong TM
    Tree Physiol; 2006 Apr; 26(4):537-44. PubMed ID: 16414932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Leaf morphological and physiological adjustments to the spectrally selective shade imposed by anthocyanins in Prunus cerasifera.
    Kyparissis A; Grammatikopoulos G; Manetas Y
    Tree Physiol; 2007 Jun; 27(6):849-57. PubMed ID: 17331903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal changes in abundance and phosphorylation status of photosynthetic proteins in eastern white pine and balsam fir.
    Verhoeven A; Osmolak A; Morales P; Crow J
    Tree Physiol; 2009 Mar; 29(3):361-74. PubMed ID: 19203960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Abundance and mortality of a specialist leafminer in response to experimental shading and fertilization of American holly.
    Potter DA
    Oecologia; 1992 Aug; 91(1):14-22. PubMed ID: 28313368
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.