BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 12670832)

  • 1. A dual-pathway ultrastructural model for the tight junction of rat proximal tubule epithelium.
    Guo P; Weinstein AM; Weinbaum S
    Am J Physiol Renal Physiol; 2003 Aug; 285(2):F241-57. PubMed ID: 12670832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Claudin-2, a component of the tight junction, forms a paracellular water channel.
    Rosenthal R; Milatz S; Krug SM; Oelrich B; Schulzke JD; Amasheh S; Günzel D; Fromm M
    J Cell Sci; 2010 Jun; 123(Pt 11):1913-21. PubMed ID: 20460438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of a fiber-matrix model to transport in renal tubules.
    Fraser WD; Baines AD
    J Gen Physiol; 1989 Nov; 94(5):863-79. PubMed ID: 2512369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Downregulation of claudin-2 expression in renal epithelial cells by metabolic acidosis.
    Balkovetz DF; Chumley P; Amlal H
    Am J Physiol Renal Physiol; 2009 Sep; 297(3):F604-11. PubMed ID: 19587148
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of tight junction structure and permeability by nutritional means.
    Mullin JM; Skrovanek SM; Valenzano MC
    Ann N Y Acad Sci; 2009 May; 1165():99-112. PubMed ID: 19538294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The density of small tight junction pores varies among cell types and is increased by expression of claudin-2.
    Van Itallie CM; Holmes J; Bridges A; Gookin JL; Coccaro MR; Proctor W; Colegio OR; Anderson JM
    J Cell Sci; 2008 Feb; 121(Pt 3):298-305. PubMed ID: 18198187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid transport and ion fluxes in mammalian kidney proximal tubule: a model analysis of isotonic transport.
    Larsen EH; Møbjerg N; Sørensen JN
    Acta Physiol (Oxf); 2006; 187(1-2):177-89. PubMed ID: 16734754
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mathematical model of rat distal convoluted tubule. II. Potassium secretion along the connecting segment.
    Weinstein AM
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F721-41. PubMed ID: 15855658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of transjunctional transport of NaCl and water in proximal tubules of mammalian kidneys.
    Kiil F
    Acta Physiol Scand; 2002 May; 175(1):55-70. PubMed ID: 11982505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for transcellular osmotic water flow in rat proximal tubules.
    Preisig PA; Berry CA
    Am J Physiol; 1985 Jul; 249(1 Pt 2):F124-31. PubMed ID: 4014469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of intercellular hypertonicity and isotonic fluid absorption in proximal tubules of mammalian kidneys.
    Kiil F
    Acta Physiol Scand; 2002 May; 175(1):71-83. PubMed ID: 11982506
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flow-dependent transport in a mathematical model of rat proximal tubule.
    Weinstein AM; Weinbaum S; Duan Y; Du Z; Yan Q; Wang T
    Am J Physiol Renal Physiol; 2007 Apr; 292(4):F1164-81. PubMed ID: 17213461
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A three-pathway pore model describes extensive transport data from Mammalian microvascular beds and frog microvessels.
    Wolf MB
    Microcirculation; 2002 Dec; 9(6):497-511. PubMed ID: 12483547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of the paracellular pathway in isotonic fluid movement across the renal tubule.
    Boulpaep EL; Sackin H
    Yale J Biol Med; 1977; 50(2):115-31. PubMed ID: 331692
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The paracellular shunt of proximal tubule.
    Weinstein AM; Windhager EE
    J Membr Biol; 2001 Dec; 184(3):241-5. PubMed ID: 11891548
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanism of proximal NaCl reabsorption in the proximal tubule of the mammalian kidney.
    Berry CA; Rector FC
    Semin Nephrol; 1991 Mar; 11(2):86-97. PubMed ID: 2034928
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation and barrier function of tight junctions in human ovarian surface epithelium.
    Zhu Y; Maric J; Nilsson M; Brännström M; Janson PO; Sundfeldt K
    Biol Reprod; 2004 Jul; 71(1):53-9. PubMed ID: 14973266
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of epidermal growth factor versus phorbol ester on kidney epithelial (LLC-PK1) tight junction permeability and cell division.
    Soler AP; Laughlin KV; Mullin JM
    Exp Cell Res; 1993 Aug; 207(2):398-406. PubMed ID: 7688317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The protoplasmic or exoplasmic face association of tight junction particles cannot predict paracellular permeability or heterotypic claudin compatibility.
    Inai T; Kamimura T; Hirose E; Iida H; Shibata Y
    Eur J Cell Biol; 2010 Jul; 89(7):547-56. PubMed ID: 20188437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hyperosmotic stress on cultured airway epithelial cells.
    Nilsson H; Dragomir A; Ahlander A; Johannesson M; Roomans GM
    Cell Tissue Res; 2007 Nov; 330(2):257-69. PubMed ID: 17768643
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.