BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

342 related articles for article (PubMed ID: 12670880)

  • 1. Molecular and functional analyses of the contractile apparatus in lymphatic muscle.
    Muthuchamy M; Gashev A; Boswell N; Dawson N; Zawieja D
    FASEB J; 2003 May; 17(8):920-2. PubMed ID: 12670880
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of the active lymph pump by flow in rat mesenteric lymphatics and thoracic duct.
    Gashev AA; Davis MJ; Zawieja DC
    J Physiol; 2002 May; 540(Pt 3):1023-37. PubMed ID: 11986387
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Calcium sensitivity and cooperativity of permeabilized rat mesenteric lymphatics.
    Dougherty PJ; Davis MJ; Zawieja DC; Muthuchamy M
    Am J Physiol Regul Integr Comp Physiol; 2008 May; 294(5):R1524-32. PubMed ID: 18305021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sinusoidal length oscillation- and receptor-mediated mRNA expression of myosin isoforms and alpha-SM actin in airway smooth muscle.
    Wahl M; Eddinger TJ; Hai CM
    Am J Physiol Cell Physiol; 2004 Dec; 287(6):C1697-708. PubMed ID: 15317664
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of myosin light chain phosphorylation decreases rat mesenteric lymphatic contractile activity.
    Wang W; Nepiyushchikh Z; Zawieja DC; Chakraborty S; Zawieja SD; Gashev AA; Davis MJ; Muthuchamy M
    Am J Physiol Heart Circ Physiol; 2009 Aug; 297(2):H726-34. PubMed ID: 19525378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional variations of contractile activity in isolated rat lymphatics.
    Gashev AA; Davis MJ; Delp MD; Zawieja DC
    Microcirculation; 2004 Sep; 11(6):477-92. PubMed ID: 15371129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of myosin light chain kinase inhibition on contractility, force development and myosin light chain 20 phosphorylation of rat cervical and thoracic duct lymphatics.
    Nepiyushchikh ZV; Chakraborty S; Wang W; Davis MJ; Zawieja DC; Muthuchamy M
    J Physiol; 2011 Nov; 589(Pt 22):5415-29. PubMed ID: 21930597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of contractile properties of porcine mesenteric and tracheobronchial lymphatic smooth muscle.
    Ferguson MK; DeFilippi VJ; Reeder LB
    Lymphology; 1994 Jun; 27(2):71-81. PubMed ID: 8078363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spontaneous contraction of pseudoglandular-stage human airspaces is associated with the presence of smooth muscle-alpha-actin and smooth muscle-specific myosin heavy chain in recently differentiated fetal human airway smooth muscle.
    Pandya HC; Innes J; Hodge R; Bustani P; Silverman M; Kotecha S
    Biol Neonate; 2006; 89(4):211-9. PubMed ID: 16293963
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression and function of COOH-terminal myosin heavy chain isoforms in mouse smooth muscle.
    Martin AF; Bhatti S; Pyne-Geithman GJ; Farjah M; Manaves V; Walker L; Franks R; Strauch AR; Paul RJ
    Am J Physiol Cell Physiol; 2007 Jul; 293(1):C238-45. PubMed ID: 17392380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of h1-calponin ablation on the contractile properties of bladder versus vascular smooth muscle in mice lacking SM-B myosin.
    Babu GJ; Celia G; Rhee AY; Yamamura H; Takahashi K; Brozovich FV; Osol G; Periasamy M
    J Physiol; 2006 Dec; 577(Pt 3):1033-42. PubMed ID: 16973711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Length-tension characteristics of bovine tracheobronchial lymphatic smooth muscle.
    Ferguson MK; Williams U; Leff AR; Mitchell RW
    Lymphology; 1993 Mar; 26(1):19-24. PubMed ID: 8464221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SMB myosin heavy chain knockout enhances tonic contraction and reduces the rate of force generation in ileum and stomach antrum.
    Huang Q; Babu GJ; Periasamy M; Eddinger TJ
    Am J Physiol Cell Physiol; 2013 Jan; 304(2):C194-206. PubMed ID: 23135699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Myosin heavy chain isoform expression in rat smooth muscle development.
    White SL; Zhou MY; Low RB; Periasamy M
    Am J Physiol; 1998 Aug; 275(2):C581-9. PubMed ID: 9688613
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Airways in smooth muscle α-actin null mice experience a compensatory mechanism that modulates their contractile response.
    Shardonofsky FR; Moore J; Schwartz RJ; Boriek AM
    J Appl Physiol (1985); 2012 Mar; 112(5):898-903. PubMed ID: 22134689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of myosin isoforms in smooth muscle cells in the corpus cavernosum penis.
    DiSanto ME; Wang Z; Menon C; Zheng Y; Chacko T; Hypolite J; Broderick G; Wein AJ; Chacko S
    Am J Physiol; 1998 Oct; 275(4):C976-87. PubMed ID: 9755051
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Smooth muscle myosin heavy chain isoforms and their role in muscle physiology.
    Babu GJ; Warshaw DM; Periasamy M
    Microsc Res Tech; 2000 Sep; 50(6):532-40. PubMed ID: 10998642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myosin light chain phosphorylation at resting level and the composition of myosin isoforms in the bladder body and urethra.
    Hypolite JA; DiSanto ME; Wein AJ; Chacko S
    Scand J Urol Nephrol Suppl; 1999; 201():46-50. PubMed ID: 10573776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myosin isoform heterogeneity in single smooth muscle cells.
    Eddinger TJ; Meer DP
    Comp Biochem Physiol B Biochem Mol Biol; 1997 May; 117(1):29-38. PubMed ID: 9180012
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiated markers in undifferentiated cells: expression of smooth muscle contractile proteins in multipotent bone marrow mesenchymal stem cells.
    Liu Y; Deng B; Zhao Y; Xie S; Nie R
    Dev Growth Differ; 2013 Jun; 55(5):591-605. PubMed ID: 23557080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.