BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 12671227)

  • 1. The role of neurotrophins in developmental cortical plasticity.
    Galuske RA; Kim DS; Singer W
    Restor Neurol Neurosci; 1999; 15(2-3):115-24. PubMed ID: 12671227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-derived neurotrophic factor reversed experience-dependent synaptic modifications in kitten visual cortex.
    Galuske RA; Kim DS; Castren E; Thoenen H; Singer W
    Eur J Neurosci; 1996 Jul; 8(7):1554-9. PubMed ID: 8758963
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.
    Galuske RA; Kim DS; Castrén E; Singer W
    Eur J Neurosci; 2000 Sep; 12(9):3315-30. PubMed ID: 10998115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for retinal brain-derived neurotrophic factor in ocular dominance plasticity.
    Mandolesi G; Menna E; Harauzov A; von Bartheld CS; Caleo M; Maffei L
    Curr Biol; 2005 Dec; 15(23):2119-24. PubMed ID: 16332537
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recovery of cortical binocularity and orientation selectivity after the critical period for ocular dominance plasticity.
    Liao DS; Krahe TE; Prusky GT; Medina AE; Ramoa AS
    J Neurophysiol; 2004 Oct; 92(4):2113-21. PubMed ID: 15102897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blockade of cyclic AMP-dependent protein kinase does not prevent the reverse ocular dominance shift in kitten visual cortex.
    Shimegi S; Fischer QS; Yang Y; Sato H; Daw NW
    J Neurophysiol; 2003 Dec; 90(6):4027-32. PubMed ID: 12944540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential effects of NT-4, NGF and BDNF on development of neurochemical architecture and cell size regulation in rat visual cortex during the critical period.
    Engelhardt M; Di Cristo G; Berardi N; Maffei L; Wahle P
    Eur J Neurosci; 2007 Jan; 25(2):529-40. PubMed ID: 17284195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protein synthesis-independent plasticity mediates rapid and precise recovery of deprived eye responses.
    Krahe TE; Medina AE; de Bittencourt-Navarrete RE; Colello RJ; Ramoa AS
    Neuron; 2005 Oct; 48(2):329-43. PubMed ID: 16242412
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early alcohol exposure induces persistent alteration of cortical columnar organization and reduced orientation selectivity in the visual cortex.
    Medina AE; Krahe TE; Ramoa AS
    J Neurophysiol; 2005 Mar; 93(3):1317-25. PubMed ID: 15483067
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of neurotrophins in neural plasticity: what we learn from the visual cortex.
    Berardi N; Lodovichi C; Caleo M; Pizzorusso T; Maffei L
    Restor Neurol Neurosci; 1999; 15(2-3):125-36. PubMed ID: 12671228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From visual experience to visual function: roles of neurotrophins.
    Berardi N; Maffei L
    J Neurobiol; 1999 Oct; 41(1):119-26. PubMed ID: 10504199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience-driven axon retraction without binocular imbalance in developing visual cortex.
    Haruta M; Hata Y
    Curr Biol; 2007 Jan; 17(1):37-42. PubMed ID: 17208184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Homeostatic regulation of eye-specific responses in visual cortex during ocular dominance plasticity.
    Mrsic-Flogel TD; Hofer SB; Ohki K; Reid RC; Bonhoeffer T; Hübener M
    Neuron; 2007 Jun; 54(6):961-72. PubMed ID: 17582335
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pre- and post-critical period induced reduction of Cat-301 immunoreactivity in the lateral geniculate nucleus and visual cortex of cats Y-blocked as adults or made strabismic as kittens.
    Yin ZQ; Crewther SG; Wang C; Crewther DP
    Mol Vis; 2006 Aug; 12():858-66. PubMed ID: 16917486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of a 14-day period of hindpaw sensory restriction on mRNA and protein levels of NGF and BDNF in the hindpaw primary somatosensory cortex.
    Dupont E; Canu MH; Stevens L; Falempin M
    Brain Res Mol Brain Res; 2005 Jan; 133(1):78-86. PubMed ID: 15661367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developmental changes of neurotrophin mRNA expression in the layers of rat visual cortex.
    Patz S; Wahle P
    Eur J Neurosci; 2006 Nov; 24(9):2453-60. PubMed ID: 17100834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use-dependent plasticity in barrel cortex: intrinsic signal imaging reveals functional expansion of spared whisker representation into adjacent deprived columns.
    Dubroff JG; Stevens RT; Hitt J; Maier DL; McCasland JS; Hodge CJ
    Somatosens Mot Res; 2005; 22(1-2):25-35. PubMed ID: 16191755
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex.
    Imamura K; Kasamatsu T; Tanaka S
    Neuroscience; 2007 Jun; 147(2):508-21. PubMed ID: 17544224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How monocular deprivation shifts ocular dominance in visual cortex of young mice.
    Frenkel MY; Bear MF
    Neuron; 2004 Dec; 44(6):917-23. PubMed ID: 15603735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.