These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 12671232)

  • 1. Restoration of vision I: neurobiological mechanisms of restoration and plasticity after brain damage - a review.
    Sabel BA
    Restor Neurol Neurosci; 1999; 15(2-3):177-200. PubMed ID: 12671232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Restoration of vision IV: role of compensatory soma swelling of surviving retinal ganglion cells in recovery of vision after optic nerve crush.
    Rousseau V; Sabel BA
    Restor Neurol Neurosci; 2001; 18(4):177-89. PubMed ID: 11847441
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Restoration of vision II: residual functions and training-induced visual field enlargement in brain-damaged patients.
    Kasten E; Poggel DA; Müller-Oehring E; Gothe J; Schulte T; Sabel BA
    Restor Neurol Neurosci; 1999; 15(2-3):273-87. PubMed ID: 12671238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loss and subsequent recovery of local cerebral glucose use in visual targets after controlled optic nerve crush in adult rats.
    Schmitt U; Cross R; Pazdernik TL; Sabel BA
    Exp Neurol; 1996 May; 139(1):17-24. PubMed ID: 8635564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vision restoration after brain and retina damage: the "residual vision activation theory".
    Sabel BA; Henrich-Noack P; Fedorov A; Gall C
    Prog Brain Res; 2011; 192():199-262. PubMed ID: 21763527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plasticity and restoration of vision after visual system damage: an update.
    Sabel BA
    Restor Neurol Neurosci; 2008; 26(4-5):243-7. PubMed ID: 18997303
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two faces of calcium activation after optic nerve trauma: life or death of retinal ganglion cells in vivo depends on calcium dynamics.
    Prilloff S; Noblejas MI; Chedhomme V; Sabel BA
    Eur J Neurosci; 2007 Jun; 25(11):3339-46. PubMed ID: 17553002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recovery of visual evoked potentials after regeneration of cut retinal ganglion cell axons within the ascending visual pathway in adult rats.
    Heiduschka P; Fischer D; Thanos S
    Restor Neurol Neurosci; 2005; 23(5-6):303-12. PubMed ID: 16477092
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of axonal transport after partial optic nerve damage is associated with secondary retinal ganglion cell death in vivo.
    Prilloff S; Henrich-Noack P; Sabel BA
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1460-6. PubMed ID: 22297499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Early downregulation of IGF-I decides the fate of rat retinal ganglion cells after optic nerve injury.
    Homma K; Koriyama Y; Mawatari K; Higuchi Y; Kosaka J; Kato S
    Neurochem Int; 2007 Apr; 50(5):741-8. PubMed ID: 17363111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual hallucinations during spontaneous and training-induced visual field recovery.
    Poggel DA; Müller-Oehring EM; Gothe J; Kenkel S; Kasten E; Sabel BA
    Neuropsychologia; 2007 Jun; 45(11):2598-607. PubMed ID: 17433383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stress system in the human brain in depression and neurodegeneration.
    Swaab DF; Bao AM; Lucassen PJ
    Ageing Res Rev; 2005 May; 4(2):141-94. PubMed ID: 15996533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experience-dependent plasticity and vision restoration in rats after optic nerve crush.
    Prilloff S; Henrich-Noack P; Kropf S; Sabel BA
    J Neurotrauma; 2010 Dec; 27(12):2295-307. PubMed ID: 20873959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sleep research in space: expression of immediate early genes in forebrain structures of rats during the nasa neurolab mission (STS-90).
    Centini C; Pompeiano O
    Arch Ital Biol; 2007 May; 145(2):117-50. PubMed ID: 17639784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial vision: needs, functioning, and testing of a retinal electronic prosthesis.
    Chader GJ; Weiland J; Humayun MS
    Prog Brain Res; 2009; 175():317-32. PubMed ID: 19660665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of acute delivery of endothelin-1 on retinal ganglion cell loss in the rat.
    Lau J; Dang M; Hockmann K; Ball AK
    Exp Eye Res; 2006 Jan; 82(1):132-45. PubMed ID: 16045909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery from optic neuritis: an ROI-based analysis of LGN and visual cortical areas.
    Korsholm K; Madsen KH; Frederiksen JL; Skimminge A; Lund TE
    Brain; 2007 May; 130(Pt 5):1244-53. PubMed ID: 17472983
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of metabolic activity in retinofugal targets after traumatic optic nerve injury is independent of retinofugal input.
    Schmitt U; Sabel BA; Cross R; Samson FE; Pazdernik TL
    Restor Neurol Neurosci; 1998; 13(3-4):153-61. PubMed ID: 12671276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive plasticity during the development of colour vision.
    Wagner HJ; Kröger RH
    Prog Retin Eye Res; 2005 Jul; 24(4):521-36. PubMed ID: 15845347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gene therapy and transplantation in the retinofugal pathway.
    Harvey AR; Hellström M; Rodger J
    Prog Brain Res; 2009; 175():151-61. PubMed ID: 19660654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.