BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 12671840)

  • 21. Mechanisms of skeletal muscle atrophy.
    Ventadour S; Attaix D
    Curr Opin Rheumatol; 2006 Nov; 18(6):631-5. PubMed ID: 17053511
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The ubiquitin-proteasome and the mitochondria-associated apoptotic pathways are sequentially downregulated during recovery after immobilization-induced muscle atrophy.
    Vazeille E; Codran A; Claustre A; Averous J; Listrat A; Béchet D; Taillandier D; Dardevet D; Attaix D; Combaret L
    Am J Physiol Endocrinol Metab; 2008 Nov; 295(5):E1181-90. PubMed ID: 18812460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. What do we really know about the ubiquitin-proteasome pathway in muscle atrophy?
    Jagoe RT; Goldberg AL
    Curr Opin Clin Nutr Metab Care; 2001 May; 4(3):183-90. PubMed ID: 11517350
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glucocorticoids regulate mRNA levels for subunits of the 19 S regulatory complex of the 26 S proteasome in fast-twitch skeletal muscles.
    Combaret L; Taillandier D; Dardevet D; Béchet D; Rallière C; Claustre A; Grizard J; Attaix D
    Biochem J; 2004 Feb; 378(Pt 1):239-46. PubMed ID: 14636157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular mechanisms regulating protein turnover in muscle.
    Price SR; Du JD; Bailey JL; Mitch WE
    Am J Kidney Dis; 2001 Jan; 37(1 Suppl 2):S112-4. PubMed ID: 11158874
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Intracellular proteolysis: signals of selective protein degradation].
    Starkova NN; Koroleva EP; Rotanova TV
    Bioorg Khim; 2000 Feb; 26(2):83-96. PubMed ID: 10808404
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of glucocorticoids in the molecular regulation of muscle wasting.
    Menconi M; Fareed M; O'Neal P; Poylin V; Wei W; Hasselgren PO
    Crit Care Med; 2007 Sep; 35(9 Suppl):S602-8. PubMed ID: 17713416
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is there a common mechanism linking muscle wasting in various disease types?
    Tisdale MJ
    Curr Opin Support Palliat Care; 2007 Dec; 1(4):287-92. PubMed ID: 18685377
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Strategies for suppressing muscle atrophy in chronic kidney disease: mechanisms activating distinct proteolytic systems.
    Mitch WE; Hu Z; Lee SW; Du J
    J Ren Nutr; 2005 Jan; 15(1):23-7. PubMed ID: 15648002
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular mechanisms of catabolism activated by metabolic acidosis.
    Mitch WE
    Blood Purif; 1995; 13(6):368-74. PubMed ID: 8821202
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The ubiquitin-proteasome pathway: review of a novel intracellular mechanism of muscle protein breakdown during sepsis and other catabolic conditions.
    Hasselgren PO; Fischer JE
    Ann Surg; 1997 Mar; 225(3):307-16. PubMed ID: 9060588
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ubiquitin-proteasome-dependent proteolysis in skeletal muscle.
    Attaix D; Aurousseau E; Combaret L; Kee A; Larbaud D; Rallière C; Souweine B; Taillandier D; Tilignac T
    Reprod Nutr Dev; 1998; 38(2):153-65. PubMed ID: 9638789
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ca(2+)-dependent proteolysis in muscle wasting.
    Costelli P; Reffo P; Penna F; Autelli R; Bonelli G; Baccino FM
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2134-46. PubMed ID: 15893952
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Activation of caspase-3 is an initial step triggering accelerated muscle proteolysis in catabolic conditions.
    Du J; Wang X; Miereles C; Bailey JL; Debigare R; Zheng B; Price SR; Mitch WE
    J Clin Invest; 2004 Jan; 113(1):115-23. PubMed ID: 14702115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pathways of muscle protein breakdown in injury and sepsis.
    Hasselgren PO
    Curr Opin Clin Nutr Metab Care; 1999 Mar; 2(2):155-60. PubMed ID: 10453347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Robert H Herman Memorial Award in Clinical Nutrition Lecture, 1997. Mechanisms causing loss of lean body mass in kidney disease.
    Mitch WE
    Am J Clin Nutr; 1998 Mar; 67(3):359-66. PubMed ID: 9497177
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation.
    Lipford JR; Deshaies RJ
    Nat Cell Biol; 2003 Oct; 5(10):845-50. PubMed ID: 14523392
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ubiquitin-proteasome-dependent proteolytic activity remains elevated after zymosan-induced sepsis in rats while muscle mass recovers.
    Minnaard R; Wagenmakers AJ; Combaret L; Attaix D; Drost MR; van Kranenburg GP; Schaart G; Hesselink MK
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2217-25. PubMed ID: 15955721
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Attenuation of skeletal muscle atrophy in cancer cachexia by D-myo-inositol 1,2,6-triphosphate.
    Russell ST; Siren PM; Siren MJ; Tisdale MJ
    Cancer Chemother Pharmacol; 2009 Aug; 64(3):517-27. PubMed ID: 19112551
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein degradation and increased mRNAs encoding proteins of the ubiquitin-proteasome proteolytic pathway in BC3H1 myocytes require an interaction between glucocorticoids and acidification.
    Isozaki U; Mitch WE; England BK; Price SR
    Proc Natl Acad Sci U S A; 1996 Mar; 93(5):1967-71. PubMed ID: 8700868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.