These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
337 related articles for article (PubMed ID: 12672134)
1. Comparison between electrochemistry/mass spectrometry and cytochrome P450 catalyzed oxidation reactions. Jurva U; Wikström HV; Weidolf L; Bruins AP Rapid Commun Mass Spectrom; 2003; 17(8):800-10. PubMed ID: 12672134 [TBL] [Abstract][Full Text] [Related]
2. Mimicry of phase I drug metabolism--novel methods for metabolite characterization and synthesis. Johansson T; Weidolf L; Jurva U Rapid Commun Mass Spectrom; 2007; 21(14):2323-31. PubMed ID: 17575570 [TBL] [Abstract][Full Text] [Related]
3. Model electrochemical-mass spectrometric studies of the cytochrome P450-catalyzed oxidations of cyclic tertiary allylamines. Jurva U; Bissel P; Isin EM; Igarashi K; Kuttab S; Castagnoli N J Am Chem Soc; 2005 Sep; 127(35):12368-77. PubMed ID: 16131218 [TBL] [Abstract][Full Text] [Related]
4. Lidocaine oxidation by electrogenerated reactive oxygen species in the light of oxidative drug metabolism. Nouri-Nigjeh E; Permentier HP; Bischoff R; Bruins AP Anal Chem; 2010 Sep; 82(18):7625-33. PubMed ID: 20735006 [TBL] [Abstract][Full Text] [Related]
5. Advances in the electrochemical simulation of oxidation reactions mediated by cytochrome p450. Bussy U; Boujtita M Chem Res Toxicol; 2014 Oct; 27(10):1652-68. PubMed ID: 25285807 [TBL] [Abstract][Full Text] [Related]
6. A proton-shuttle mechanism mediated by the porphyrin in benzene hydroxylation by cytochrome p450 enzymes. de Visser SP; Shaik S J Am Chem Soc; 2003 Jun; 125(24):7413-24. PubMed ID: 12797816 [TBL] [Abstract][Full Text] [Related]
7. Acebutolol and alprenolol metabolism predictions: comparative study of electrochemical and cytochrome P450-catalyzed reactions using liquid chromatography coupled to high-resolution mass spectrometry. Bussy U; Delaforge M; El-Bekkali C; Ferchaud-Roucher V; Krempf M; Tea I; Galland N; Jacquemin D; Boujtita M Anal Bioanal Chem; 2013 Jul; 405(18):6077-85. PubMed ID: 23700103 [TBL] [Abstract][Full Text] [Related]
8. On the mechanism of amine oxidations by P450. Karki SB; Dinnocenzo JP Xenobiotica; 1995 Jul; 25(7):711-24. PubMed ID: 7483668 [TBL] [Abstract][Full Text] [Related]
9. Electrocatalytic oxidation of hydrogen peroxide on a platinum electrode in the imitation of oxidative drug metabolism of lidocaine. Nouri-Nigjeh E; Bruins AP; Bischoff R; Permentier HP Analyst; 2012 Oct; 137(20):4698-702. PubMed ID: 22929863 [TBL] [Abstract][Full Text] [Related]
10. P450-catalyzed vs. electrochemical oxidation of haloperidol studied by ultra-performance liquid chromatography/electrospray ionization mass spectrometry. Mali'n TJ; Weidolf L; Castagnoli N; Jurva U Rapid Commun Mass Spectrom; 2010 May; 24(9):1231-40. PubMed ID: 20391593 [TBL] [Abstract][Full Text] [Related]
11. Investigation of the electrochemical oxidation products of zotepine and their fragmentation using on-line electrochemistry/electrospray ionization mass spectrometry. Nozaki K; Kitagawa H; Kimura S; Kagayama A; Arakawa R J Mass Spectrom; 2006 May; 41(5):606-12. PubMed ID: 16575780 [TBL] [Abstract][Full Text] [Related]
12. Generation and identification of reactive metabolites by electrochemistry and immobilized enzymes coupled on-line to liquid chromatography/mass spectrometry. Lohmann W; Karst U Anal Chem; 2007 Sep; 79(17):6831-9. PubMed ID: 17685550 [TBL] [Abstract][Full Text] [Related]
13. Cytochrome P450-catalyzed oxidation of N-benzyl-N-cyclopropylamine generates both cyclopropanone hydrate and 3-hydroxypropionaldehyde via hydrogen abstraction, not single electron transfer. Cerny MA; Hanzlik RP J Am Chem Soc; 2006 Mar; 128(10):3346-54. PubMed ID: 16522116 [TBL] [Abstract][Full Text] [Related]
14. Kinetic isotope effects implicate a single oxidant for cytochrome P450-mediated O-dealkylation, N-oxygenation, and aromatic hydroxylation of 6-methoxyquinoline. Dowers TS; Jones JP Drug Metab Dispos; 2006 Aug; 34(8):1288-90. PubMed ID: 16714370 [TBL] [Abstract][Full Text] [Related]
15. Kinetic isotope effects implicate two electrophilic oxidants in cytochrome p450-catalyzed hydroxylations. Newcomb M; Aebisher D; Shen R; Chandrasena RE; Hollenberg PF; Coon MJ J Am Chem Soc; 2003 May; 125(20):6064-5. PubMed ID: 12785830 [TBL] [Abstract][Full Text] [Related]
16. Bilirubin degradation by uncoupled cytochrome P450. Comparison with a chemical oxidation system and characterization of the products by high-performance liquid chromatography/electrospray ionization mass spectrometry. De Matteis F; Lord GA; Kee Lim C; Pons N Rapid Commun Mass Spectrom; 2006; 20(8):1209-17. PubMed ID: 16541400 [TBL] [Abstract][Full Text] [Related]
17. Biomimetic alcohol oxidations by an iron(III) porphyrin complex: relevance to cytochrome P-450 catalytic oxidation and involvement of the two-state radical rebound mechanism. Han JH; Yoo SK; Seo JS; Hong SJ; Kim SK; Kim C Dalton Trans; 2005 Jan; (2):402-6. PubMed ID: 15616733 [TBL] [Abstract][Full Text] [Related]
18. [Use of cytochrome P-450 and ferroporphyrin as catalyzers in hydroxylation reactions jointly with electrochemical systems]. Mohr P; Scheller F; Kühn M Prikl Biokhim Mikrobiol; 1982; 18(4):481-8. PubMed ID: 7122438 [TBL] [Abstract][Full Text] [Related]
19. Characterization of novel dihydrothienopyridinium and thienopyridinium metabolites of ticlopidine in vitro: role of peroxidases, cytochromes p450, and monoamine oxidases. Dalvie DK; O'Connell TN Drug Metab Dispos; 2004 Jan; 32(1):49-57. PubMed ID: 14709620 [TBL] [Abstract][Full Text] [Related]
20. Gauging the relative oxidative powers of compound I, ferric-hydroperoxide, and the ferric-hydrogen peroxide species of cytochrome P450 toward C-H hydroxylation of a radical clock substrate. Derat E; Kumar D; Hirao H; Shaik S J Am Chem Soc; 2006 Jan; 128(2):473-84. PubMed ID: 16402834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]