BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 12672436)

  • 1. Astronomical image segmentation by self-organizing neural networks and wavelets.
    Núñez J; Llacer J
    Neural Netw; 2003; 16(3-4):411-7. PubMed ID: 12672436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmentation and grading of brain tumors on apparent diffusion coefficient images using self-organizing maps.
    Vijayakumar C; Damayanti G; Pant R; Sreedhar CM
    Comput Med Imaging Graph; 2007 Oct; 31(7):473-84. PubMed ID: 17572068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Feature extraction of chromosomes from 3-D confocal microscope images.
    Kyan MJ; Guan L; Arnison MR; Cogswell CJ
    IEEE Trans Biomed Eng; 2001 Nov; 48(11):1306-18. PubMed ID: 11686629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Self-organization neural network based ultrasonic heart image segmentation].
    Wang T; Zheng C; Li D; Ran J; Zheng Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 1998 Dec; 15(4):397-9, 405. PubMed ID: 12552788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation of medical ultrasonic image using hybrid neural network.
    Wang TF; Li DY; Zheng CQ; Zheng Y
    Space Med Med Eng (Beijing); 2001 Apr; 14(2):84-7. PubMed ID: 11806427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain MR images segmentation using statistical ratio: mapping between watershed and competitive Hopfield clustering network algorithms.
    Kuo WF; Lin CY; Sun YN
    Comput Methods Programs Biomed; 2008 Sep; 91(3):191-8. PubMed ID: 18555554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An efficient neural network based method for medical image segmentation.
    Torbati N; Ayatollahi A; Kermani A
    Comput Biol Med; 2014 Jan; 44():76-87. PubMed ID: 24377691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A neural model of selective attention and object segmentation in the visual scene: an approach based on partial synchronization and star-like architecture of connections.
    Borisyuk R; Kazanovich Y; Chik D; Tikhanoff V; Cangelosi A
    Neural Netw; 2009; 22(5-6):707-19. PubMed ID: 19616919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [A pyramidal multiphase level set algorithm for multi-object segmentation of 3-D medical images].
    Zheng G; Wang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2008 Oct; 25(5):989-93, 1008. PubMed ID: 19024432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved system for object detection and star/galaxy classification via local subspace analysis.
    Liu ZY; Chiu KC; Xu L
    Neural Netw; 2003; 16(3-4):437-51. PubMed ID: 12672439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection and segmentation of concealed objects in terahertz images.
    Shen X; Dietlein CR; Grossman E; Popovic Z; Meyer FG
    IEEE Trans Image Process; 2008 Dec; 17(12):2465-75. PubMed ID: 19004716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The segmentation and visualization of a neuron in the housefly's visual system.
    Anderson JR; Barrett SF; Wilcox MJ
    Biomed Sci Instrum; 2005; 41():235-40. PubMed ID: 15850111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sonar image segmentation using an unsupervised hierarchical MRF model.
    Mignotte M; Collet C; Perez P; Bouthemy P
    IEEE Trans Image Process; 2000; 9(7):1216-31. PubMed ID: 18262959
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automatic segmentation of magnetic resonance images using a decision tree with spatial information.
    Chao WH; Chen YY; Lin SH; Shih YY; Tsang S
    Comput Med Imaging Graph; 2009 Mar; 33(2):111-21. PubMed ID: 19097854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fully automated biomedical image segmentation by self-organized model adaptation.
    Wismüller A; Vietze F; Behrends J; Meyer-Baese A; Reiser M; Ritter H
    Neural Netw; 2004; 17(8-9):1327-44. PubMed ID: 15555869
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell-competition algorithm: a new segmentation algorithm for multiple objects with irregular boundaries in ultrasound images.
    Chen CM; Chou YH; Chen CS; Cheng JZ; Ou YF; Yeh FC; Chen KW
    Ultrasound Med Biol; 2005 Dec; 31(12):1647-64. PubMed ID: 16344127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Low-level aspects of segmentation and recognition.
    Ullman S
    Philos Trans R Soc Lond B Biol Sci; 1992 Sep; 337(1281):371-8; discussion 379. PubMed ID: 1359588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On symmetry, perspectivity, and level-set-based segmentation.
    Riklin-Raviv T; Sochen N; Kiryati N
    IEEE Trans Pattern Anal Mach Intell; 2009 Aug; 31(8):1458-71. PubMed ID: 19542579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic segmentation of echocardiography based on a morphological reconstruction algorithm.
    Shen XH; Li DY; Lin JL; Wang TF; Wen XH; Zheng CQ; Rao L; Tang H
    Space Med Med Eng (Beijing); 2005 Aug; 18(4):246-50. PubMed ID: 16224844
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detecting movement-related EEG change by wavelet decomposition-based neural networks trained with single thumb movement.
    Chen CW; Lin CC; Ju MS
    Clin Neurophysiol; 2007 Apr; 118(4):802-14. PubMed ID: 17317306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.