BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 12673049)

  • 21. A low affinity Ca2+ receptor controls the final steps in peptide secretion from pituitary melanotrophs.
    Thomas P; Wong JG; Lee AK; Almers W
    Neuron; 1993 Jul; 11(1):93-104. PubMed ID: 8393324
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ca(2+) and frequency dependence of exocytosis in isolated somata of magnocellular supraoptic neurones of the rat hypothalamus.
    Soldo BL; Giovannucci DR; Stuenkel EL; Moises HC
    J Physiol; 2004 Mar; 555(Pt 3):699-711. PubMed ID: 14645448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The effects of disruption of A kinase anchoring protein-protein kinase A association on protein kinase A signalling in neuroendocrine melanotroph cells of Xenopus laevis.
    Corstens GJ; van Boxtel R; van den Hurk MJ; Roubos EW; Jenks BG
    J Neuroendocrinol; 2006 Jul; 18(7):477-83. PubMed ID: 16774496
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Voltage- and Ca2+-dependent burst generation in neuroendocrine Dahlgren cells in the teleost Platichthys flesus.
    Brierley MJ; Bauer CS; Lu W; Riccardi D; Balment RJ; McCrohan CR
    J Neuroendocrinol; 2004 Oct; 16(10):832-41. PubMed ID: 15500543
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity.
    Roubos EW; Scheenen WJ; Jenks BG
    Ann N Y Acad Sci; 2005 Apr; 1040():172-83. PubMed ID: 15891022
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ion interaction at the pore of Lc-type Ca2+ channel is sufficient to mediate depolarization-induced exocytosis.
    Lerner I; Trus M; Cohen R; Yizhar O; Nussinovitch I; Atlas D
    J Neurochem; 2006 Apr; 97(1):116-27. PubMed ID: 16515555
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial distribution of Ca(2+) signals during repetitive depolarizing stimuli in adrenal chromaffin cells.
    Marengo FD; Monck JR
    Biophys J; 2003 Nov; 85(5):3397-417. PubMed ID: 14581241
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Localization and physiological regulation of the exocytosis protein SNAP-25 in the brain and pituitary gland of Xenopus laevis.
    Kolk SM; Nordquist R; Tuinhof R; Gagliardini L; Thompson B; Cools AR; Roubos EW
    J Neuroendocrinol; 2000 Jul; 12(7):694-706. PubMed ID: 10849215
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetics of calcium steps underlying calcium oscillations in melanotrope cells of Xenopus laevis.
    Koopman WJ; Scheenen WJ; Roubos EW; Jenks BG
    Cell Calcium; 1997 Sep; 22(3):167-78. PubMed ID: 9330787
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells.
    van den Hurk MJ; Jenks BG; Roubos EW; Scheenen WJ
    Neurosci Lett; 2005 Mar; 377(2):125-9. PubMed ID: 15740850
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Pituitary cell type-specific electrical activity, calcium signaling and secretion.
    Stojilkovic SS
    Biol Res; 2006; 39(3):403-23. PubMed ID: 17106574
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis.
    Jenks BG; Kidane AH; Scheenen WJ; Roubos EW
    Neuroendocrinology; 2007; 85(3):177-85. PubMed ID: 17389778
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit.
    Zhang H; Roubos EW; Jenks BG; Scheenen WJ
    Gen Comp Endocrinol; 2006 Jan; 145(2):140-7. PubMed ID: 16214143
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Calcium modulation of exocytosis-linked plasma membrane potential oscillations in INS-1 832/13 cells.
    Gerencser AA; Mulder H; Nicholls DG
    Biochem J; 2015 Oct; 471(1):111-22. PubMed ID: 26243883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels.
    Zhang HY; Langeslag M; Voncken M; Roubos EW; Scheenen WJ
    J Neuroendocrinol; 2005 Jan; 17(1):1-9. PubMed ID: 15720469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroendocrine gamma-aminobutyric acid (GABA): functional differences in GABAA versus GABAB receptor inhibition of the melanotrope cell of Xenopus laevis.
    Buzzi M; Bemelmans FF; Roubos EW; Jenks BG
    Endocrinology; 1997 Jan; 138(1):203-12. PubMed ID: 8977405
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physiological control of Xunc18 expression in neuroendocrine melanotrope cells of Xenopus laevis.
    Kolk SM; Berghs CA; Vaudry H; Verhage M; Roubos EW
    Endocrinology; 2001 May; 142(5):1950-7. PubMed ID: 11316760
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sub-second quenched-flow/X-ray microanalysis shows rapid Ca2+ mobilization from cortical stores paralleled by Ca2+ influx during synchronous exocytosis in Paramecium cells.
    Hardt M; Plattner H
    Eur J Cell Biol; 2000 Sep; 79(9):642-52. PubMed ID: 11043405
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of inositol phosphate metabolism in melanotrope cells of Xenopus laevis in relation to background adaptation.
    Jenks BG; de Koning HP; Cruijsen PM; Mauger CM; Roubos EW; Tonon MC; Desrues L; Vaudry H
    Ann N Y Acad Sci; 1993 May; 680():188-98. PubMed ID: 8512217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Voltage-gated Ca2+ influx and mitochondrial Ca2+ initiate secretion from Aplysia neuroendocrine cells.
    Hickey CM; Groten CJ; Sham L; Carter CJ; Magoski NS
    Neuroscience; 2013 Oct; 250():755-72. PubMed ID: 23876326
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.