These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 12673057)

  • 1. MASE1 and MASE2: two novel integral membrane sensory domains.
    Nikolskaya AN; Mulkidjanian AY; Beech IB; Galperin MY
    J Mol Microbiol Biotechnol; 2003; 5(1):11-6. PubMed ID: 12673057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Common extracellular sensory domains in transmembrane receptors for diverse signal transduction pathways in bacteria and archaea.
    Zhulin IB; Nikolskaya AN; Galperin MY
    J Bacteriol; 2003 Jan; 185(1):285-94. PubMed ID: 12486065
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational analysis of a conserved signal-transducing element: the HAMP linker of the Escherichia coli nitrate sensor NarX.
    Appleman JA; Stewart V
    J Bacteriol; 2003 Jan; 185(1):89-97. PubMed ID: 12486044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GGDEF domain is homologous to adenylyl cyclase.
    Pei J; Grishin NV
    Proteins; 2001 Feb; 42(2):210-6. PubMed ID: 11119645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CHASE: an extracellular sensing domain common to transmembrane receptors from prokaryotes, lower eukaryotes and plants.
    Mougel C; Zhulin IB
    Trends Biochem Sci; 2001 Oct; 26(10):582-4. PubMed ID: 11590001
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The CHASE domain: a predicted ligand-binding module in plant cytokinin receptors and other eukaryotic and bacterial receptors.
    Anantharaman V; Aravind L
    Trends Biochem Sci; 2001 Oct; 26(10):579-82. PubMed ID: 11590000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The cytoplasmic helical linker domain of receptor histidine kinase and methyl-accepting proteins is common to many prokaryotic signalling proteins.
    Aravind L; Ponting CP
    FEMS Microbiol Lett; 1999 Jul; 176(1):111-6. PubMed ID: 10418137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MHYT, a new integral membrane sensor domain.
    Galperin MY; Gaidenko TA; Mulkidjanian AY; Nakano M; Price CW
    FEMS Microbiol Lett; 2001 Nov; 205(1):17-23. PubMed ID: 11728710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The design and development of Tar-EnvZ chimeric receptors.
    Yoshida T; Phadtare S; Inouye M
    Methods Enzymol; 2007; 423():166-83. PubMed ID: 17609131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of comparative genomics in the identification and analysis of novel families of membrane-associated receptors in bacteria.
    Anantharaman V; Aravind L
    BMC Genomics; 2003 Aug; 4(1):34. PubMed ID: 12914674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conservation of functional domain structure in bicarbonate-regulated "soluble" adenylyl cyclases in bacteria and eukaryotes.
    Kobayashi M; Buck J; Levin LR
    Dev Genes Evol; 2004 Oct; 214(10):503-9. PubMed ID: 15322879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasticity of the PAS domain and a potential role for signal transduction in the histidine kinase DcuS.
    Etzkorn M; Kneuper H; Dünnwald P; Vijayan V; Krämer J; Griesinger C; Becker S; Unden G; Baldus M
    Nat Struct Mol Biol; 2008 Oct; 15(10):1031-9. PubMed ID: 18820688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new structural domain in the Escherichia coli RcsC hybrid sensor kinase connects histidine kinase and phosphoreceiver domains.
    Rogov VV; Rogova NY; Bernhard F; Koglin A; Löhr F; Dötsch V
    J Mol Biol; 2006 Nov; 364(1):68-79. PubMed ID: 17005198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of sensory and signal-transducing domains in two-component signaling systems.
    Galperin MY; Nikolskaya AN
    Methods Enzymol; 2007; 422():47-74. PubMed ID: 17628134
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two-component signal transduction systems of Desulfovibrio vulgaris: structural and phylogenetic analysis and deduction of putative cognate pairs.
    Zhang W; Culley DE; Wu G; Brockman FJ
    J Mol Evol; 2006 Apr; 62(4):473-87. PubMed ID: 16547644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mutational analysis of the histidine-containing phosphotransfer (HPt) signaling domain of the ArcB sensor in Escherichia coli.
    Matsushika A; Mizuno T
    Biosci Biotechnol Biochem; 1998 Nov; 62(11):2236-8. PubMed ID: 9972245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of HAMP domains on class IIIb adenylyl cyclases from Mycobacterium tuberculosis.
    Linder JU; Hammer A; Schultz JE
    Eur J Biochem; 2004 Jun; 271(12):2446-51. PubMed ID: 15182360
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme.
    Tews I; Findeisen F; Sinning I; Schultz A; Schultz JE; Linder JU
    Science; 2005 May; 308(5724):1020-3. PubMed ID: 15890882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of the HAMP domain region of sensory rhodopsin transducers in signal transduction.
    Gushchin IY; Gordeliy VI; Grudinin S
    Biochemistry; 2011 Feb; 50(4):574-80. PubMed ID: 21162553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Spirulina platensis adenylate cyclase gene, cyaC, encodes a novel signal transduction protein.
    Kasahara M; Yashiro K; Sakamoto T; Ohmori M
    Plant Cell Physiol; 1997 Jul; 38(7):828-36. PubMed ID: 9297847
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.