BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 12673205)

  • 1. Functional analysis of the N-terminal domain of the Myc oncoprotein.
    Oster SK; Mao DY; Kennedy J; Penn LZ
    Oncogene; 2003 Apr; 22(13):1998-2010. PubMed ID: 12673205
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New Myc-interacting proteins: a second Myc network emerges.
    Sakamuro D; Prendergast GC
    Oncogene; 1999 May; 18(19):2942-54. PubMed ID: 10378691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The basic region/helix-loop-helix/leucine zipper domain of Myc proto-oncoproteins: function and regulation.
    Lüscher B; Larsson LG
    Oncogene; 1999 May; 18(19):2955-66. PubMed ID: 10378692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional analysis of the carboxy-terminal transforming region of v-Myc: binding to Max is necessary, but not sufficient, for cellular transformation.
    Min S; Mascarenhas NT; Taparowsky EJ
    Oncogene; 1993 Oct; 8(10):2691-701. PubMed ID: 8378081
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Activation of gene transcription by the amino terminus of the N-Myc protein does not require association with the protein encoded by the retinoblastoma suppressor gene RB1.
    Cziepluch C; Wenzel A; Schürmann J; Schwab M
    Oncogene; 1993 Oct; 8(10):2833-8. PubMed ID: 8378092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse Sin3A interacts with and can functionally substitute for the amino-terminal repression of the Myc antagonist Mxi1.
    Rao G; Alland L; Guida P; Schreiber-Agus N; Chen K; Chin L; Rochelle JM; Seldin MF; Skoultchi AI; DePinho RA
    Oncogene; 1996 Mar; 12(5):1165-72. PubMed ID: 8649810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decreased tumorigenicity of c-Myc-transformed fibroblasts expressing active USF2.
    Choe C; Chen N; Sawadogo M
    Exp Cell Res; 2005 Jan; 302(1):1-10. PubMed ID: 15541720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. v-Myc, but not Max, possesses domains that function in both transcription activation and cellular transformation.
    Min S; Taparowsky EJ
    Oncogene; 1992 Aug; 7(8):1531-40. PubMed ID: 1630816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. YY1 can inhibit c-Myc function through a mechanism requiring DNA binding of YY1 but neither its transactivation domain nor direct interaction with c-Myc.
    Austen M; Cerni C; Lüscher-Firzlaff JM; Lüscher B
    Oncogene; 1998 Jul; 17(4):511-20. PubMed ID: 9696045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gene-target recognition among members of the myc superfamily and implications for oncogenesis.
    O'Hagan RC; Schreiber-Agus N; Chen K; David G; Engelman JA; Schwab R; Alland L; Thomson C; Ronning DR; Sacchettini JC; Meltzer P; DePinho RA
    Nat Genet; 2000 Feb; 24(2):113-9. PubMed ID: 10655054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Repression of the human immunodeficiency virus type-1 long terminal repeat by the c-Myc oncoprotein.
    Stojanova A; Caro C; Jarjour RJ; Oster SK; Penn LZ; Germinario RJ
    J Cell Biochem; 2004 May; 92(2):400-13. PubMed ID: 15108364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Involvement of the 'leucine zipper' region in the oligomerization and transforming activity of human c-myc protein.
    Dang CV; McGuire M; Buckmire M; Lee WM
    Nature; 1989 Feb; 337(6208):664-6. PubMed ID: 2645525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amino-terminal domains of c-myc and N-myc proteins mediate binding to the retinoblastoma gene product.
    Rustgi AK; Dyson N; Bernards R
    Nature; 1991 Aug; 352(6335):541-4. PubMed ID: 1865909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. c-Myc creates an activation loop by transcriptionally repressing its own functional inhibitor, hMad4, in young fibroblasts, a loop lost in replicatively senescent fibroblasts.
    Marcotte R; Chen JM; Huard S; Wang E
    J Cell Biochem; 2005 Dec; 96(5):1071-85. PubMed ID: 16167342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human c-Myc isoforms differentially regulate cell growth and apoptosis in Drosophila melanogaster.
    Benassayag C; Montero L; Colombié N; Gallant P; Cribbs D; Morello D
    Mol Cell Biol; 2005 Nov; 25(22):9897-909. PubMed ID: 16260605
    [TBL] [Abstract][Full Text] [Related]  

  • 16. c-Myc initiates illegitimate replication of the ribonucleotide reductase R2 gene.
    Kuschak TI; Kuschak BC; Taylor CL; Wright JA; Wiener F; Mai S
    Oncogene; 2002 Jan; 21(6):909-20. PubMed ID: 11840336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Omomyc, a potential Myc dominant negative, enhances Myc-induced apoptosis.
    Soucek L; Jucker R; Panacchia L; Ricordy R; Tatò F; Nasi S
    Cancer Res; 2002 Jun; 62(12):3507-10. PubMed ID: 12067996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. C-MYC: evidence for multiple regulatory functions.
    Penn LJ; Laufer EM; Land H
    Semin Cancer Biol; 1990 Feb; 1(1):69-80. PubMed ID: 2133113
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Low molecular weight inhibitors of Myc-Max interaction and function.
    Yin X; Giap C; Lazo JS; Prochownik EV
    Oncogene; 2003 Sep; 22(40):6151-9. PubMed ID: 13679853
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of myc amplification and overexpression in cell growth, differentiation and death.
    Koskinen PJ; Alitalo K
    Semin Cancer Biol; 1993 Feb; 4(1):3-12. PubMed ID: 8448376
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.