BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 12673768)

  • 1. Effect of freezing and thawing rates on denaturation of proteins in aqueous solutions.
    Cao E; Chen Y; Cui Z; Foster PR
    Biotechnol Bioeng; 2003 Jun; 82(6):684-90. PubMed ID: 12673768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein denaturation during freezing and thawing in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.
    Pikal-Cleland KA; Rodríguez-Hornedo N; Amidon GL; Carpenter JF
    Arch Biochem Biophys; 2000 Dec; 384(2):398-406. PubMed ID: 11368330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reversible Self-Association in Lactate Dehydrogenase during Freeze-Thaw in Buffered Solutions Using Neutron Scattering.
    Sonje J; Thakral S; Krueger S; Suryanarayanan R
    Mol Pharm; 2021 Dec; 18(12):4459-4474. PubMed ID: 34709831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection of Alcohol Dehydrogenase against Freeze-Thaw Stress by Ice-Binding Proteins Is Proportional to Their Ice Recrystallization Inhibition Property.
    Lee YH; Kim K; Lee JH; Kim HJ
    Mar Drugs; 2020 Dec; 18(12):. PubMed ID: 33322085
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of glycine on pH changes and protein stability during freeze-thawing in phosphate buffer systems.
    Pikal-Cleland KA; Cleland JL; Anchordoquy TJ; Carpenter JF
    J Pharm Sci; 2002 Sep; 91(9):1969-79. PubMed ID: 12210044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-thaw studies of a model protein, lactate dehydrogenase, in the presence of cryoprotectants.
    Nema S; Avis KE
    J Parenter Sci Technol; 1993; 47(2):76-83. PubMed ID: 8515348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A beetle antifreeze protein protects lactate dehydrogenase under freeze-thawing.
    Rodriguez C; Sajjadi S; Abrol R; Wen X
    Int J Biol Macromol; 2019 Sep; 136():1153-1160. PubMed ID: 31226372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lyophilization-induced protein denaturation in phosphate buffer systems: monomeric and tetrameric beta-galactosidase.
    Pikal-Cleland KA; Carpenter JF
    J Pharm Sci; 2001 Sep; 90(9):1255-68. PubMed ID: 11745778
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping of solution components, pH changes, protein stability and the elimination of protein precipitation during freeze-thawing of fibroblast growth factor 20.
    Maity H; Karkaria C; Davagnino J
    Int J Pharm; 2009 Aug; 378(1-2):122-35. PubMed ID: 19505546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Suppression of protein inactivation during freezing by minimizing pH changes using ionic cryoprotectants.
    Krausková Ľ; Procházková J; Klašková M; Filipová L; Chaloupková R; Malý S; Damborský J; Heger D
    Int J Pharm; 2016 Jul; 509(1-2):41-49. PubMed ID: 27224008
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The development of the cell cryopreservation protocol with controlled rate thawing.
    Gurina TM; Pakhomov AV; Polyakova AL; Legach EI; Bozhok GA
    Cell Tissue Bank; 2016 Jun; 17(2):303-16. PubMed ID: 26384675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface-induced denaturation of proteins during freezing and its inhibition by surfactants.
    Chang BS; Kendrick BS; Carpenter JF
    J Pharm Sci; 1996 Dec; 85(12):1325-30. PubMed ID: 8961147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of buffer composition and processing conditions on aggregation of bovine IgG during freeze-drying.
    Sarciaux JM; Mansour S; Hageman MJ; Nail SL
    J Pharm Sci; 1999 Dec; 88(12):1354-61. PubMed ID: 10585234
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of controlled ice nucleation on primary drying stage and protein recovery in vials cooled in a modified freeze-dryer.
    Passot S; Tréléa IC; Marin M; Galan M; Morris GJ; Fonseca F
    J Biomech Eng; 2009 Jul; 131(7):074511. PubMed ID: 19640147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of temperature at which slow cooling is terminated and of thawing rate on the survival of one-cell mouse embryos frozen in dimethyl sulfoxide or 1,2-propanediol solutions.
    Van den Abbeel E; Van der Elst J; Van Steirteghem AC
    Cryobiology; 1994 Oct; 31(5):423-33. PubMed ID: 7988151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of the individual contributions of ice formation and freeze-concentration on isothermal stability of lactate dehydrogenase during freezing.
    Bhatnagar BS; Pikal MJ; Bogner RH
    J Pharm Sci; 2008 Feb; 97(2):798-814. PubMed ID: 17506511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-thaw aging affects activity of lactate dehydrogenase.
    Bhatnagar BS; Nehm SJ; Pikal MJ; Bogner RH
    J Pharm Sci; 2005 Jun; 94(6):1382-8. PubMed ID: 15858849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature history on the freeze-thawing process and activity of LDH formulations.
    Aldén M; Magnusson A
    Pharm Res; 1997 Apr; 14(4):426-30. PubMed ID: 9144726
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Controlled Ice Nucleation on Stability of Lactate Dehydrogenase During Freeze-Drying.
    Fang R; Tanaka K; Mudhivarthi V; Bogner RH; Pikal MJ
    J Pharm Sci; 2018 Mar; 107(3):824-830. PubMed ID: 29074380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of cryoprotectants on freezing, lyophilization, and storage of lyophilized recombinant alpha 1-antitrypsin formulations.
    Vemuri S; Yu CD; Roosdorp N
    PDA J Pharm Sci Technol; 1994; 48(5):241-6. PubMed ID: 8000898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.