BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 12674336)

  • 1. Fibroblast growth factors lead to increased Msx2 expression and fusion in calvarial sutures.
    Ignelzi MA; Wang W; Young AT
    J Bone Miner Res; 2003 Apr; 18(4):751-9. PubMed ID: 12674336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Msx2 gene dosage influences the number of proliferative osteogenic cells in growth centers of the developing murine skull: a possible mechanism for MSX2-mediated craniosynostosis in humans.
    Liu YH; Tang Z; Kundu RK; Wu L; Luo W; Zhu D; Sangiorgi F; Snead ML; Maxson RE
    Dev Biol; 1999 Jan; 205(2):260-74. PubMed ID: 9917362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. FGF-, BMP- and Shh-mediated signalling pathways in the regulation of cranial suture morphogenesis and calvarial bone development.
    Kim HJ; Rice DP; Kettunen PJ; Thesleff I
    Development; 1998 Apr; 125(7):1241-51. PubMed ID: 9477322
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous induction of apoptosis, collagen type I expression and mineralization in the developing coronal suture following FGF4 and FGF2 application.
    Mathijssen IM; van Leeuwen JP; Vermeij-Keers C
    J Craniofac Genet Dev Biol; 2000; 20(3):127-36. PubMed ID: 11321597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The BMP antagonist noggin regulates cranial suture fusion.
    Warren SM; Brunet LJ; Harland RM; Economides AN; Longaker MT
    Nature; 2003 Apr; 422(6932):625-9. PubMed ID: 12687003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased calvaria cell differentiation and bone matrix formation induced by fibroblast growth factor receptor 2 mutations in Apert syndrome.
    Lomri A; Lemonnier J; Hott M; de Parseval N; Lajeunie E; Munnich A; Renier D; Marie PJ
    J Clin Invest; 1998 Mar; 101(6):1310-7. PubMed ID: 9502772
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alx4 and Msx2 play phenotypically similar and additive roles in skull vault differentiation.
    Antonopoulou I; Mavrogiannis LA; Wilkie AO; Morriss-Kay GM
    J Anat; 2004 Jun; 204(6):487-99. PubMed ID: 15198690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. FGF2 alters expression of the pyrophosphate/phosphate regulating proteins, PC-1, ANK and TNAP, in the calvarial osteoblastic cell line, MC3T3E1(C4).
    Hatch NE; Nociti F; Swanson E; Bothwell M; Somerman M
    Connect Tissue Res; 2005; 46(4-5):184-92. PubMed ID: 16546821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regional differentiation of cranial suture-associated dura mater in vivo and in vitro: implications for suture fusion and patency.
    Greenwald JA; Mehrara BJ; Spector JA; Warren SM; Crisera FE; Fagenholz PJ; Bouletreau PJ; Longaker MT
    J Bone Miner Res; 2000 Dec; 15(12):2413-30. PubMed ID: 11127206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transforming growth factor-beta 2 and TGF-beta 3 regulate fetal rat cranial suture morphogenesis by regulating rates of cell proliferation and apoptosis.
    Opperman LA; Adab K; Gakunga PT
    Dev Dyn; 2000 Oct; 219(2):237-47. PubMed ID: 11002343
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular mechanisms in calvarial bone and suture development, and their relation to craniosynostosis.
    Rice DP; Rice R; Thesleff I
    Eur J Orthod; 2003 Apr; 25(2):139-48. PubMed ID: 12737212
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of genes differentially expressed by prematurely fused human sutures using a novel in vivo - in vitro approach.
    Coussens AK; Hughes IP; Wilkinson CR; Morris CP; Anderson PJ; Powell BC; van Daal A
    Differentiation; 2008 May; 76(5):531-45. PubMed ID: 18093228
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of FGF and TWIST in calvarial bone and suture development.
    Rice DP; Aberg T; Chan Y; Tang Z; Kettunen PJ; Pakarinen L; Maxson RE; Thesleff I
    Development; 2000 May; 127(9):1845-55. PubMed ID: 10751173
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of cranial suture morphogenesis.
    Ogle RC; Tholpady SS; McGlynn KA; Ogle RA
    Cells Tissues Organs; 2004; 176(1-3):54-66. PubMed ID: 14745235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activating (P253R, C278F) and dominant negative mutations of FGFR2: differential effects on calvarial bone cell proliferation, differentiation, and mineralization.
    Ratisoontorn C; Fan GF; McEntee K; Nah HD
    Connect Tissue Res; 2003; 44 Suppl 1():292-7. PubMed ID: 12952211
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localization of TGF-Bs and perlecan in mouse skull development.
    Grave B
    Ann R Australas Coll Dent Surg; 2000 Oct; 15():352-6. PubMed ID: 11709974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Co-ordination of TGF-beta and FGF signaling pathways in bone organ cultures.
    Mukherjee A; Dong SS; Clemens T; Alvarez J; Serra R
    Mech Dev; 2005 Apr; 122(4):557-71. PubMed ID: 15804568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Msx2 deficiency in mice causes pleiotropic defects in bone growth and ectodermal organ formation.
    Satokata I; Ma L; Ohshima H; Bei M; Woo I; Nishizawa K; Maeda T; Takano Y; Uchiyama M; Heaney S; Peters H; Tang Z; Maxson R; Maas R
    Nat Genet; 2000 Apr; 24(4):391-5. PubMed ID: 10742104
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Craniofacial disorders caused by mutations in homeobox genes MSX1 and MSX2.
    Cohen MM
    J Craniofac Genet Dev Biol; 2000; 20(1):19-25. PubMed ID: 10879654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro differentiation of human calvarial suture derived cells with and without dexamethasone does not induce in vivo-like expression.
    Coussens AK; Hughes IP; Morris CP; Powell BC; Anderson PJ
    J Cell Physiol; 2009 Jan; 218(1):183-91. PubMed ID: 18803234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.