BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

394 related articles for article (PubMed ID: 12674336)

  • 21. FGF signaling is necessary for the specification of the odontogenic mesenchyme.
    Mandler M; Neubüser A
    Dev Biol; 2001 Dec; 240(2):548-59. PubMed ID: 11784082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fgfr2 and osteopontin domains in the developing skull vault are mutually exclusive and can be altered by locally applied FGF2.
    Iseki S; Wilkie AO; Heath JK; Ishimaru T; Eto K; Morriss-Kay GM
    Development; 1997 Sep; 124(17):3375-84. PubMed ID: 9310332
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mutation associated with Crouzon syndrome causes ligand-independent dimerization and activation of FGF receptor-2.
    Mangasarian K; Li Y; Mansukhani A; Basilico C
    J Cell Physiol; 1997 Jul; 172(1):117-25. PubMed ID: 9207932
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Genetics of craniofacial development].
    van Adrichem LN; Hoogeboom AJ; Wolvius EB
    Ned Tijdschr Tandheelkd; 2008 Feb; 115(2):61-8. PubMed ID: 18326400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unravelling the molecular control of calvarial suture fusion in children with craniosynostosis.
    Coussens AK; Wilkinson CR; Hughes IP; Morris CP; van Daal A; Anderson PJ; Powell BC
    BMC Genomics; 2007 Dec; 8():458. PubMed ID: 18076769
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of FGF-2/-9 in calvarial bone cell cultures: differentiation stage-dependent mitogenic effect, inverse regulation of BMP-2 and noggin, and enhancement of osteogenic potential.
    Fakhry A; Ratisoontorn C; Vedhachalam C; Salhab I; Koyama E; Leboy P; Pacifici M; Kirschner RE; Nah HD
    Bone; 2005 Feb; 36(2):254-66. PubMed ID: 15780951
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts.
    Mansukhani A; Bellosta P; Sahni M; Basilico C
    J Cell Biol; 2000 Jun; 149(6):1297-308. PubMed ID: 10851026
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reciprocal regulation of osteocalcin transcription by the homeodomain proteins Msx2 and Dlx5.
    Newberry EP; Latifi T; Towler DA
    Biochemistry; 1998 Nov; 37(46):16360-8. PubMed ID: 9819228
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ectopic Msx2 overexpression inhibits and Msx2 antisense stimulates calvarial osteoblast differentiation.
    Dodig M; Tadic T; Kronenberg MS; Dacic S; Liu YH; Maxson R; Rowe DW; Lichtler AC
    Dev Biol; 1999 May; 209(2):298-307. PubMed ID: 10328922
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fibroblast growth factor signaling regulates Dach1 expression during skeletal development.
    Horner A; Shum L; Ayres JA; Nonaka K; Nuckolls GH
    Dev Dyn; 2002 Sep; 225(1):35-45. PubMed ID: 12203718
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Responsiveness of developing dental tissues to fibroblast growth factors: expression of splicing alternatives of FGFR1, -2, -3, and of FGFR4; and stimulation of cell proliferation by FGF-2, -4, -8, and -9.
    Kettunen P; Karavanova I; Thesleff I
    Dev Genet; 1998; 22(4):374-85. PubMed ID: 9664689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Premature suture closure and ectopic cranial bone in mice expressing Msx2 transgenes in the developing skull.
    Liu YH; Kundu R; Wu L; Luo W; Ignelzi MA; Snead ML; Maxson RE
    Proc Natl Acad Sci U S A; 1995 Jun; 92(13):6137-41. PubMed ID: 7597092
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular and cellular bases of syndromic craniosynostoses.
    Bonaventure J; El Ghouzzi V
    Expert Rev Mol Med; 2003 Jan; 5(4):1-17. PubMed ID: 14987407
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cell mixing at a neural crest-mesoderm boundary and deficient ephrin-Eph signaling in the pathogenesis of craniosynostosis.
    Merrill AE; Bochukova EG; Brugger SM; Ishii M; Pilz DT; Wall SA; Lyons KM; Wilkie AO; Maxson RE
    Hum Mol Genet; 2006 Apr; 15(8):1319-28. PubMed ID: 16540516
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic control of the cell proliferation-differentiation balance in the developing skull vault: roles of fibroblast growth factor receptor signalling pathways.
    Morriss-Kay GM; Iseki S; Johnson D
    Novartis Found Symp; 2001; 232():102-16; discussion 116-21. PubMed ID: 11277075
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular signaling in pathogenesis of craniosynostosis: the role of fibroblast growth factor and transforming growth factor-β.
    Chim H; Manjila S; Cohen AR; Gosain AK
    Neurosurg Focus; 2011 Aug; 31(2):E7. PubMed ID: 21806346
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Increased FGF8 signaling promotes chondrogenic rather than osteogenic development in the embryonic skull.
    Schmidt L; Taiyab A; Melvin VS; Jones KL; Williams T
    Dis Model Mech; 2018 Jun; 11(6):. PubMed ID: 29752281
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sox2 induction by FGF and FGFR2 activating mutations inhibits Wnt signaling and osteoblast differentiation.
    Mansukhani A; Ambrosetti D; Holmes G; Cornivelli L; Basilico C
    J Cell Biol; 2005 Mar; 168(7):1065-76. PubMed ID: 15781477
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional characterization of a novel FGFR2 mutation, E731K, in craniosynostosis.
    Park J; Park OJ; Yoon WJ; Kim HJ; Choi KY; Cho TJ; Ryoo HM
    J Cell Biochem; 2012 Feb; 113(2):457-64. PubMed ID: 21928350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Raman imaging demonstrates FGF2-induced craniosynostosis in mouse calvaria.
    Crane NJ; Morris MD; Ignelzi MA; Yu G
    J Biomed Opt; 2005; 10(3):031119. PubMed ID: 16229644
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.