BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 12674400)

  • 1. Phytoremediation of heavy metals from soils.
    McIntyre T
    Adv Biochem Eng Biotechnol; 2003; 78():97-123. PubMed ID: 12674400
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils.
    Jing YD; He ZL; Yang XE
    J Zhejiang Univ Sci B; 2007 Mar; 8(3):192-207. PubMed ID: 17323432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pollution pressure drives microbial assemblages that improve the phytoremediation potential of heavy metals by Ricinus communis.
    Rubio-Noguez D; Breton-Deval L; Salinas-Peralta I; Juárez K; Galicia L
    World J Microbiol Biotechnol; 2024 Jun; 40(8):241. PubMed ID: 38866993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Use of brassica plants in the phytoremediation and biofumigation processes.
    Szczygłowska M; Piekarska A; Konieczka P; Namieśnik J
    Int J Mol Sci; 2011; 12(11):7760-71. PubMed ID: 22174630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioavailability of heavy metals in soil: impact on microbial biodegradation of organic compounds and possible improvement strategies.
    Olaniran AO; Balgobind A; Pillay B
    Int J Mol Sci; 2013 May; 14(5):10197-228. PubMed ID: 23676353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advances and Applications of Water Phytoremediation: A Potential Biotechnological Approach for the Treatment of Heavy Metals from Contaminated Water.
    Delgado-González CR; Madariaga-Navarrete A; Fernández-Cortés JM; Islas-Pelcastre M; Oza G; Iqbal HMN; Sharma A
    Int J Environ Res Public Health; 2021 May; 18(10):. PubMed ID: 34068925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phytoremediation of toxic chemicals in aquatic environment with special emphasis on duckweed mediated approaches.
    Thakuria A; Singh KK; Dutta A; Corton E; Stom D; Barbora L; Goswami P
    Int J Phytoremediation; 2023; 25(13):1699-1713. PubMed ID: 36941761
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current Status of Biotechnological Approaches to Enhance the Phytoremediation of Heavy Metals in India-A Review.
    Barathi S; Lee J; Venkatesan R; Vetcher AA
    Plants (Basel); 2023 Nov; 12(22):. PubMed ID: 38005713
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the phytoremediation potential of native plant species identified in an area contaminated by volatile organic compounds: a systematic review.
    de Souza DM; da Silva JL; Ludwig LDC; Petersen BC; Brehm FA; Modolo RCE; De Marchi TC; Figueiredo R; Moraes CAM
    Int J Phytoremediation; 2023; 25(11):1524-1541. PubMed ID: 36708140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Techno-economic analysis of phytoremediation: A strategic rethinking.
    Wang J; Aghajani Delavar M
    Sci Total Environ; 2023 Dec; 902():165949. PubMed ID: 37536595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Research Progress in Reducing Pollution and Sequestration of Carbon by Carbon Neutral Plants].
    Chen Y; Zhou QX; Tao ZX; Zheng T; Wu KY; Zhang JL; Ouyang SH
    Huan Jing Ke Xue; 2024 Jun; 45(6):3446-3458. PubMed ID: 38897765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Creation of Environmentally Friendly Super "Dinitrotoluene Scavenger" Plants.
    Gao JJ; Li ZJ; Zhu B; Wang LJ; Xu J; Wang B; Fu XY; Han HJ; Zhang WH; Deng YD; Wang Y; Zuo ZH; Peng RH; Tian YS; Yao QH
    Adv Sci (Weinh); 2023 Oct; 10(30):e2303785. PubMed ID: 37715295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Vitro Culture Studies for the Mitigation of Heavy Metal Stress in Plants.
    Elazab D; Lambardi M; Capuana M
    Plants (Basel); 2023 Sep; 12(19):. PubMed ID: 37836127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting?
    Rascio N; Navari-Izzo F
    Plant Sci; 2011 Feb; 180(2):169-81. PubMed ID: 21421358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Implications of metal accumulation mechanisms to phytoremediation.
    Memon AR; Schröder P
    Environ Sci Pollut Res Int; 2009 Mar; 16(2):162-75. PubMed ID: 19067014
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytoremediation Potential of Different Genotypes of
    Urošević J; Stanković D; Jokanović D; Trivan G; Rodzkin A; Jović Đ; Jovanović F
    Plants (Basel); 2024 Mar; 13(5):. PubMed ID: 38475581
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relevance of Soil Heavy Metal XRF Screening for Quality and Landscaping of Public Playgrounds.
    Răcușan Ghircoiaș O; Tănăselia C; Chintoanu M; Crișan I; Hoble A; Ștefan R; Dîrja M
    Toxics; 2023 Jun; 11(6):. PubMed ID: 37368630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Willow and Herbaceous Species' Phytoremediation Potential in Zn-Contaminated Farm Field Soil in Eastern Québec, Canada: A Greenhouse Feasibility Study.
    Licinio A; Laur J; Pitre FE; Labrecque M
    Plants (Basel); 2022 Dec; 12(1):. PubMed ID: 36616296
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Literature Review on the Effects of Heavy Metal Stress and Alleviating Possibilities through Exogenously Applied Agents in Alfalfa (
    Jócsák I; Knolmajer B; Szarvas M; Rabnecz G; Pál-Fám F
    Plants (Basel); 2022 Aug; 11(16):. PubMed ID: 36015464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessment of Lead (Pb) Remediation Potential of Senna obtusifolia in Dareta Village, Zamfara, Nigeria.
    Udiba UU; Antai EE; Akpan ER
    J Health Pollut; 2020 Mar; 10(25):200301. PubMed ID: 32175172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.