These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Acceleration by stannous ion of the evoked release of transmitter from motor nerve endings in the frog. Hattori T; Maehashi H Brain Res; 1988 Nov; 473(1):157-60. PubMed ID: 3264745 [TBL] [Abstract][Full Text] [Related]
26. [The generation and spread of excitation in the motor nerve ending of the frog]. Zefirov AL; Khalilov IA Biull Eksp Biol Med; 1990 Mar; 109(3):219-22. PubMed ID: 2364140 [TBL] [Abstract][Full Text] [Related]
27. Spontaneous and uniquantal-evoked endplate currents in normal frogs are indistinguishable. Van der Kloot W J Physiol; 1996 Apr; 492 ( Pt 1)(Pt 1):155-62. PubMed ID: 8730591 [TBL] [Abstract][Full Text] [Related]
28. The influence of quantal content on the time course of the endplate current in frogs. Melik Z Pflugers Arch; 2000; 440(5 Suppl):R105-6. PubMed ID: 11005631 [TBL] [Abstract][Full Text] [Related]
29. The relation between tonicity and impulse-evoked transmitter release in the frog. Kita H; Narita K; Van der Kloot W J Physiol; 1982 Apr; 325():213-22. PubMed ID: 6286938 [TBL] [Abstract][Full Text] [Related]
30. Non-uniform responses to Ca2+ along the frog neuromuscular junction: effects on the probability of spontaneous and evoked transmitter release. Robitaille R; Tremblay JP Neuroscience; 1991; 40(2):571-85. PubMed ID: 1674115 [TBL] [Abstract][Full Text] [Related]
31. Quantal release and facilitation at frog neuromuscular junctions at about 0 degrees C. Molgó J; Van der Kloot W J Neurophysiol; 1991 Apr; 65(4):834-40. PubMed ID: 1675673 [TBL] [Abstract][Full Text] [Related]
32. Estimating the time course of evoked quantal release at the frog neuromuscular junction using end-plate current latencies. Baldo GJ; Cohen IS; Van der Kloot W J Physiol; 1986 May; 374():503-13. PubMed ID: 3489094 [TBL] [Abstract][Full Text] [Related]
33. Hexamethonium- and methyllycaconitine-induced changes in acetylcholine release from rat motor nerve terminals. Tian L; Prior C; Dempster J; Marshall IG Br J Pharmacol; 1997 Nov; 122(6):1025-34. PubMed ID: 9401765 [TBL] [Abstract][Full Text] [Related]
34. Spontaneous quantal and non-quantal release of acetylcholine at mouse endplate during onset of hypoxia. Bukharaeva EA; Salakhutdinov RI; Vyskocil F; Nikolsky EE Physiol Res; 2005; 54(2):251-5. PubMed ID: 15826238 [TBL] [Abstract][Full Text] [Related]
35. The effect of non-quantal acetylcholine release on quantal miniature currents at mouse diaphragm. Giniatullin RA; Khazipov RN; Oranska TI; Nikolsky EE; Voronin VA; Vyskocil F J Physiol; 1993 Jul; 466():105-14. PubMed ID: 8410687 [TBL] [Abstract][Full Text] [Related]
36. The effects of nerve section on the non-quantal release of ACh from the motor nerve terminal. Stanley EF; Drachman DB Brain Res; 1986 Feb; 365(2):289-92. PubMed ID: 3004659 [TBL] [Abstract][Full Text] [Related]
37. The kinetics of quantal releases during end-plate currents at the frog neuromuscular junction. Van der Kloot W J Physiol; 1988 Aug; 402():605-26. PubMed ID: 2853224 [TBL] [Abstract][Full Text] [Related]
38. Involvement of protein kinases in the upregulation of acetylcholine release at endplates of alpha-bungarotoxin-treated rats. Plomp JJ; Molenaar PC J Physiol; 1996 May; 493 ( Pt 1)(Pt 1):175-86. PubMed ID: 8735703 [TBL] [Abstract][Full Text] [Related]
39. The effect of carbachol and alpha-bungarotoxin on the frequency of miniature endplate potentials at the frog neuromuscular junction. Bukharaeva E; Ipatova T; Nikolsky EE; Vyskocil F Exp Physiol; 2000 Mar; 85(2):125-31. PubMed ID: 10751508 [TBL] [Abstract][Full Text] [Related]
40. Presynaptic nicotinic cholinoreceptors modulate velocity of the action potential propagation along the motor nerve endings at a high-frequency synaptic activity. Kovyazina IV; Tsentsevitsky AN; Nikolsky EE Dokl Biol Sci; 2016 May; 468(1):115-7. PubMed ID: 27411821 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]