These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 12675158)

  • 1. Low- and high-affinity reactions in rapid neurotransmission.
    Dunant Y; Bloc A
    Neurochem Res; 2003 Apr; 28(3-4):659-65. PubMed ID: 12675158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acetylcholine release in rapid synapses: two fast partners--mediatophore and vesicular Ca2+/H+ antiport.
    Dunant Y
    J Mol Neurosci; 2006; 30(1-2):209-14. PubMed ID: 17192678
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exocytosis, mediatophore, and vesicular Ca2+/H+ antiport in rapid neurotransmission.
    Dunant Y; Cordeiro JM; Gonçalves PP
    Ann N Y Acad Sci; 2009 Jan; 1152():100-12. PubMed ID: 19161381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic selectivity of the Ca2+/H+ antiport in synaptic vesicles of sheep brain cortex.
    Gonçalves PP; Meireles SM; Neves P; Vale MG
    Brain Res Mol Brain Res; 1999 Apr; 67(2):283-91. PubMed ID: 10216226
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Frequenin/NCS-1 and the Ca2+-channel alpha1-subunit co-regulate synaptic transmission and nerve-terminal growth.
    Dason JS; Romero-Pozuelo J; Marin L; Iyengar BG; Klose MK; Ferrús A; Atwood HL
    J Cell Sci; 2009 Nov; 122(Pt 22):4109-21. PubMed ID: 19861494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca2+-H+ antiport activity in synaptic vesicles isolated from sheep brain cortex.
    Gonçalves PP; Meireles SM; Gravato C; Vale MG
    Neurosci Lett; 1998 May; 247(2-3):87-90. PubMed ID: 9655599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium uptake mechanisms of mitochondria.
    Santo-Domingo J; Demaurex N
    Biochim Biophys Acta; 2010; 1797(6-7):907-12. PubMed ID: 20079335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Control of the calcium concentration involved in acetylcholine release and its facilitation: an additional role for synaptic vesicles?
    Fossier P; Diebler MF; Mothet JP; Israel M; Tauc L; Baux G
    Neuroscience; 1998 Jul; 85(1):85-91. PubMed ID: 9607705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmitter release modulation by intracellular Ca2+ buffers in facilitating and depressing nerve terminals of pyramidal cells in layer 2/3 of the rat neocortex indicates a target cell-specific difference in presynaptic calcium dynamics.
    Rozov A; Burnashev N; Sakmann B; Neher E
    J Physiol; 2001 Mar; 531(Pt 3):807-26. PubMed ID: 11251060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation of hippocampal synaptic transmission by low concentrations of cell-permeant Ca2+ chelators: effects of Ca2+ affinity, chelator structure and binding kinetics.
    Spigelman I; Tymianski M; Wallace CM; Carlen PL; Velumian AA
    Neuroscience; 1996 Nov; 75(2):559-72. PubMed ID: 8931019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Membrane transport in the cellular homeostasis of calcium.
    Carafoli E
    J Cardiovasc Pharmacol; 1986; 8 Suppl 8():S3-6. PubMed ID: 2433521
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptotagmin 1 is required for vesicular Ca²⁺/H⁺-antiport activity.
    Cordeiro JM; Boda B; Gonçalves PP; Dunant Y
    J Neurochem; 2013 Jul; 126(1):37-46. PubMed ID: 23607712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantal mechanism of neural transmitter release.
    Katz B
    Science; 1971 Jul; 173(3992):123-6. PubMed ID: 4325812
    [No Abstract]   [Full Text] [Related]  

  • 14. Low-frequency neuromuscular depression is a consequence of a reduction in nerve terminal Ca2+ currents at mammalian motor nerve endings.
    Silinsky EM
    Anesthesiology; 2013 Aug; 119(2):326-34. PubMed ID: 23535502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The physiology of neuromuscular transmission.
    Thesleff S
    Bull Schweiz Akad Med Wiss; 1967 Jul; 22(5):443-9. PubMed ID: 4300055
    [No Abstract]   [Full Text] [Related]  

  • 16. Neurotransmitter release evoked by nerve impulses without Ca2+ entry through Ca2+ channels in frog motor nerve endings.
    Silinsky EM; Watanabe M; Redman RS; Qiu R; Hirsh JK; Hunt JM; Solsona CS; Alford S; MacDonald RC
    J Physiol; 1995 Feb; 482 ( Pt 3)(Pt 3):511-20. PubMed ID: 7738845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibition of mitochondrial Ca2+ release diminishes the effectiveness of methyl mercury to release acetylcholine from synaptosomes.
    Levesque PC; Hare MF; Atchison WD
    Toxicol Appl Pharmacol; 1992 Jul; 115(1):11-20. PubMed ID: 1378659
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The thiol-oxidizing agent diamide increases transmitter release by decreasing calcium requirements for neuromuscular transmission in the frog.
    Carlen PL; Kosower EM; Werman R
    Brain Res; 1976 Nov; 117(2):257-76. PubMed ID: 186154
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nicotinic antagonist-produced frequency-dependent changes in acetylcholine release from rat motor nerve terminals.
    Tian L; Prior C; Dempster J; Marshall IG
    J Physiol; 1994 May; 476(3):517-29. PubMed ID: 7914535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phenotypic changes in Arabidopsis caused by expression of a yeast vacuolar Ca2+/H+ antiporter.
    Hirschi KD; Miranda ML; Wilganowski NL
    Plant Mol Biol; 2001 May; 46(1):57-65. PubMed ID: 11437250
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.