BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 12675305)

  • 1. Cytogenetic and molecular characterization of the MBSAT1 satellite DNA in holokinetic chromosomes of the cabbage moth, Mamestra brassicae (Lepidoptera).
    Mandrioli M; Manicardi GC; Marec F
    Chromosome Res; 2003; 11(1):51-6. PubMed ID: 12675305
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification and chromosomal localization of mariner-like elements in the cabbage moth Mamestra brassicae (Lepidoptera).
    Mandrioli M
    Chromosome Res; 2003; 11(4):319-22. PubMed ID: 12906127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytogenetic and molecular characterization of a highly repeated DNA sequence in the peach potato aphid Myzus persicae.
    Mandrioli M; Bizzaro D; Manicardi GC; Gionghi D; Bassoli L; Bianchi U
    Chromosoma; 1999 Dec; 108(7):436-42. PubMed ID: 10654082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of a new hobo element in the cabbage moth, Mamestra brassicae (Lepidoptera).
    Borsatti F; Azzoni P; Mandrioli M
    Hereditas; 2003; 139(2):151-5. PubMed ID: 15061816
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CpSAT-1, a transcribed satellite sequence from the codling moth, Cydia pomonella.
    Věchtová P; Dalíková M; Sýkorová M; Žurovcová M; Füssy Z; Zrzavá M
    Genetica; 2016 Aug; 144(4):385-95. PubMed ID: 27236660
    [TBL] [Abstract][Full Text] [Related]  

  • 6. W-enriched satellite sequence in the Indian meal moth, Plodia interpunctella (Lepidoptera, Pyralidae).
    Dalíková M; Zrzavá M; Kubíčková S; Marec F
    Chromosome Res; 2017 Oct; 25(3-4):241-252. PubMed ID: 28500471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cytogenetic characterization of telomeres in the holocentric chromosomes of the lepidopteran Mamestra brassicae.
    Mandrioli M
    Chromosome Res; 2002; 10(4):279-86. PubMed ID: 12199141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cytogenetic analysis of the highly repetitive DNA in the genome of Apodemus argenteus, with comments on the phylogenetic relationships in the genus Apodemus.
    Fukushi D; Kuro-O M; Shichiri M; Obara Y; Tsuchiya K
    Cytogenet Cell Genet; 2001; 92(3-4):254-63. PubMed ID: 11435698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EST sequencing and fosmid library construction in a non-model moth, Mamestra brassicae, for comparative mapping.
    Kamimura M; Tateishi K; Tanaka-Okuyama M; Okabe T; Shibata F; Sahara K; Yasukochi Y
    Genome; 2012 Nov; 55(11):775-81. PubMed ID: 23199572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes.
    Fuková I; Nguyen P; Marec F
    Genome; 2005 Dec; 48(6):1083-92. PubMed ID: 16391677
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FISH identification of Helicoverpa armigera and Mamestra brassicae chromosomes by BAC and fosmid probes.
    Sahara K; Yoshido A; Shibata F; Fujikawa-Kojima N; Okabe T; Tanaka-Okuyama M; Yasukochi Y
    Insect Biochem Mol Biol; 2013 Aug; 43(8):644-53. PubMed ID: 23628856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation of a variant family of mouse minor satellite DNA that hybridizes preferentially to chromosome 4.
    Broccoli D; Trevor KT; Miller OJ; Miller DA
    Genomics; 1991 May; 10(1):68-74. PubMed ID: 2045111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Molecular cytogenetic research on the polymorphism of segments of the constitutive heterochromatin in human chromosomes].
    Iurov IuB; Mitkevich SP; Aleksandrov IA
    Genetika; 1988 Feb; 24(2):356-65. PubMed ID: 3360319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo mass production in the cabbage moth (Mamestra brassicae) of a heterologous (Panolis) and a homologous (Mamestra) nuclear polyhedrosis virus.
    Kelly PM; Entwistle PF
    J Virol Methods; 1988; 19(3-4):249-56. PubMed ID: 3286670
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution and molecular composition of heterochromatin in the holocentric chromosomes of the aphid Rhopalosiphum padi (Hemiptera: Aphididae).
    Monti V; Manicardi GC; Mandrioli M
    Genetica; 2010 Oct; 138(9-10):1077-84. PubMed ID: 20848163
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of cloned satellite DNA sequences to molecular-cytogenetic analysis of constitutive heterochromatin heteromorphisms in man.
    Yurov YB; Mitkevich SP; Alexandrov IA
    Hum Genet; 1987 Jun; 76(2):157-64. PubMed ID: 3475246
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New types of mouse centromeric satellite DNAs.
    Kuznetsova IS; Prusov AN; Enukashvily NI; Podgornaya OI
    Chromosome Res; 2005; 13(1):9-25. PubMed ID: 15791408
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution mapping of repetitive DNA by in situ hybridization: molecular and chromosomal features of prominent dispersed and discretely localized DNA families from the wild beet species Beta procumbens.
    Schmidt T; Heslop-Harrison JS
    Plant Mol Biol; 1996 Mar; 30(6):1099-113. PubMed ID: 8704122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Satellite DNA and heterochromatin of the flour beetle Tribolium confusum.
    Plohl M; Lucijanić-Justić V; Ugarković D; Petitpierre E; Juan C
    Genome; 1993 Jun; 36(3):467-75. PubMed ID: 7688707
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.