BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

530 related articles for article (PubMed ID: 12675595)

  • 21. [Chondrogenesis of passaged chondrocytes induced by different dynamic loads in bioreactor].
    Wang N; Chen J; Zhang G; Chai W
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):786-92. PubMed ID: 24063164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Research progress of bioreactor biophysical factors in cartilage tissue engineering].
    Ye G; Zhang F; Shi H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Jul; 27(7):810-3. PubMed ID: 24063168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanobioreactors for Cartilage Tissue Engineering.
    Weber JF; Perez R; Waldman SD
    Methods Mol Biol; 2015; 1340():203-19. PubMed ID: 26445841
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tissue engineering of cartilage using a mechanobioreactor exerting simultaneous mechanical shear and compression to simulate the rolling action of articular joints.
    Shahin K; Doran PM
    Biotechnol Bioeng; 2012 Apr; 109(4):1060-73. PubMed ID: 22095592
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term intermittent compressive stimulation improves the composition and mechanical properties of tissue-engineered cartilage.
    Waldman SD; Spiteri CG; Grynpas MD; Pilliar RM; Kandel RA
    Tissue Eng; 2004; 10(9-10):1323-31. PubMed ID: 15588393
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of cell seeding density and nutrient supply for articular cartilage tissue engineering with deformational loading.
    Mauck RL; Wang CC; Oswald ES; Ateshian GA; Hung CT
    Osteoarthritis Cartilage; 2003 Dec; 11(12):879-90. PubMed ID: 14629964
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Enhancing cell seeding of scaffolds in tissue engineering through manipulation of hydrodynamic parameters.
    Bueno EM; Laevsky G; Barabino GA
    J Biotechnol; 2007 May; 129(3):516-31. PubMed ID: 17324484
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The importance of bicarbonate and nonbicarbonate buffer systems in batch and continuous flow bioreactors for articular cartilage tissue engineering.
    Khan AA; Surrao DC
    Tissue Eng Part C Methods; 2012 May; 18(5):358-68. PubMed ID: 22092352
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels.
    Mauck RL; Seyhan SL; Ateshian GA; Hung CT
    Ann Biomed Eng; 2002 Sep; 30(8):1046-56. PubMed ID: 12449765
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bioreactor cultivation conditions modulate the composition and mechanical properties of tissue-engineered cartilage.
    Vunjak-Novakovic G; Martin I; Obradovic B; Treppo S; Grodzinsky AJ; Langer R; Freed LE
    J Orthop Res; 1999 Jan; 17(1):130-8. PubMed ID: 10073657
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular utilization determines viability and matrix distribution profiles in chondrocyte-seeded alginate constructs.
    Heywood HK; Sembi PK; Lee DA; Bader DL
    Tissue Eng; 2004; 10(9-10):1467-79. PubMed ID: 15588406
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development and validation of a novel bioreactor system for load- and perfusion-controlled tissue engineering of chondrocyte-constructs.
    Schulz RM; Wüstneck N; van Donkelaar CC; Shelton JC; Bader A
    Biotechnol Bioeng; 2008 Nov; 101(4):714-28. PubMed ID: 18814291
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chondrogenesis of aged human articular cartilage in a scaffold-free bioreactor.
    Marlovits S; Tichy B; Truppe M; Gruber D; Vécsei V
    Tissue Eng; 2003 Dec; 9(6):1215-26. PubMed ID: 14670109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A cartilage tissue engineering approach combining starch-polycaprolactone fibre mesh scaffolds with bovine articular chondrocytes.
    Oliveira JT; Crawford A; Mundy JM; Moreira AR; Gomes ME; Hatton PV; Reis RL
    J Mater Sci Mater Med; 2007 Feb; 18(2):295-302. PubMed ID: 17323161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanical vibrations increase the proliferation of articular chondrocytes in high-density culture.
    Kaupp JA; Waldman SD
    Proc Inst Mech Eng H; 2008 Jul; 222(5):695-703. PubMed ID: 18756688
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [An in vitro study on three-dimensional cultivation with dynamic compressive stimulation for cartilage tissue engineering].
    Wang Yongcheng ; Meng H; Yuan Xueling ; Peng J; Guo Q; Lu S; Wang A
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Sep; 28(9):1145-9. PubMed ID: 25509782
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions.
    Wendt D; Stroebel S; Jakob M; John GT; Martin I
    Biorheology; 2006; 43(3,4):481-8. PubMed ID: 16912419
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Type I collagen-based fibrous capsule enhances integration of tissue-engineered cartilage with native articular cartilage.
    Yang YH; Ard MB; Halper JT; Barabino GA
    Ann Biomed Eng; 2014 Apr; 42(4):716-26. PubMed ID: 24362632
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioreactors for tissue engineering of cartilage.
    Concaro S; Gustavson F; Gatenholm P
    Adv Biochem Eng Biotechnol; 2009; 112():125-43. PubMed ID: 19290500
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential morphology and homogeneity of tissue-engineered cartilage in hydrodynamic cultivation with transient exposure to insulin-like growth factor-1 and transforming growth factor-β1.
    Yang YH; Barabino GA
    Tissue Eng Part A; 2013 Nov; 19(21-22):2349-60. PubMed ID: 23672482
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.