BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 12675600)

  • 1. Precipitation of lysozyme nanoparticles from dimethyl sulfoxide using carbon dioxide as antisolvent.
    Muhrer G; Mazzotti M
    Biotechnol Prog; 2003; 19(2):549-56. PubMed ID: 12675600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs.
    Dong Y; Ng WK; Hu J; Shen S; Tan RB
    Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study of the GAS process for producing microparticles of beclomethasone-17,21-dipropionate suitable for pulmonary delivery.
    Bakhbakhi Y; Charpentier PA; Rohani S
    Int J Pharm; 2006 Feb; 309(1-2):71-80. PubMed ID: 16412594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Encapsulation of lysozyme in a biodegradable polymer by precipitation with a vapor-over-liquid antisolvent.
    Young TJ; Johnston KP; Mishima K; Tanaka H
    J Pharm Sci; 1999 Jun; 88(6):640-50. PubMed ID: 10350502
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supercritical fluid assisted atomization introduced by an enhanced mixer for micronization of lysozyme: Particle morphology, size and protein stability.
    Du Z; Guan YX; Yao SJ; Zhu ZQ
    Int J Pharm; 2011 Dec; 421(2):258-68. PubMed ID: 22001535
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ampicillin Nanoparticles Production via Supercritical CO2 Gas Antisolvent Process.
    Esfandiari N; Ghoreishi SM
    AAPS PharmSciTech; 2015 Dec; 16(6):1263-9. PubMed ID: 25771736
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Process parameters and morphology in puerarin, phospholipids and their complex microparticles generation by supercritical antisolvent precipitation.
    Li Y; Yang DJ; Chen SL; Chen SB; Chan AS
    Int J Pharm; 2008 Jul; 359(1-2):35-45. PubMed ID: 18440736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mineralization of CaCO3 in the presence of egg white lysozyme.
    Voinescu AE; Touraud D; Lecker A; Pfitzner A; Kunz W; Ninham BW
    Langmuir; 2007 Nov; 23(24):12269-74. PubMed ID: 17949115
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supercritical fluid processing of proteins. I: lysozyme precipitation from organic solution.
    Moshashaée S; Bisrat M; Forbes RT; Nyqvist H; York P
    Eur J Pharm Sci; 2000 Sep; 11(3):239-45. PubMed ID: 11042230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid, room-temperature synthesis of antibacterial bionanocomposites of lysozyme with amorphous silica or titania.
    Luckarift HR; Dickerson MB; Sandhage KH; Spain JC
    Small; 2006 May; 2(5):640-3. PubMed ID: 17193101
    [No Abstract]   [Full Text] [Related]  

  • 11. Development in modeling submicron particle formation in two phases flow of solvent-supercritical antisolvent emulsion.
    Dukhin SS; Shen Y; Dave R; Pfeffer R
    Adv Colloid Interface Sci; 2007 Oct; 134-135():72-88. PubMed ID: 17568550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of an in situ forming PLGA drug delivery system I. Characterization of a non-aqueous protein precipitation.
    Körber M; Bodmeier R
    Eur J Pharm Sci; 2008 Nov; 35(4):283-92. PubMed ID: 18721875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation, characterization and in vivo evaluation of amorphous atorvastatin calcium nanoparticles using supercritical antisolvent (SAS) process.
    Kim MS; Jin SJ; Kim JS; Park HJ; Song HS; Neubert RH; Hwang SJ
    Eur J Pharm Biopharm; 2008 Jun; 69(2):454-65. PubMed ID: 18359211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of the spraying conditions and nozzle design on the shape and size distribution of particles obtained with supercritical fluid drying.
    Bouchard A; Jovanović N; de Boer AH; Martín A; Jiskoot W; Crommelin DJ; Hofland GW; Witkamp GJ
    Eur J Pharm Biopharm; 2008 Sep; 70(1):389-401. PubMed ID: 18534833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Controlled antisolvent precipitation of spironolactone nanoparticles by impingement mixing.
    Dong Y; Ng WK; Shen S; Kim S; Tan RB
    Int J Pharm; 2011 May; 410(1-2):175-9. PubMed ID: 21397674
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrasonically controlled particle size distribution of explosives: a safe method.
    Patil MN; Gore GM; Pandit AB
    Ultrason Sonochem; 2008 Mar; 15(3):177-87. PubMed ID: 17532248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Silica nanoparticle size influences the structure and enzymatic activity of adsorbed lysozyme.
    Vertegel AA; Siegel RW; Dordick JS
    Langmuir; 2004 Aug; 20(16):6800-7. PubMed ID: 15274588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and characterization of amorphous amphotericin B nanoparticles for oral administration through liquid antisolvent precipitation.
    Zu Y; Sun W; Zhao X; Wang W; Li Y; Ge Y; Liu Y; Wang K
    Eur J Pharm Sci; 2014 Mar; 53():109-17. PubMed ID: 24345795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Precipitation of Ibuprofen Sodium using compressed carbon dioxide as antisolvent.
    Bakhbakhi Y; Alfadul S; Ajbar A
    Eur J Pharm Sci; 2013 Jan; 48(1-2):30-9. PubMed ID: 23127825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. About the solubility of reduced SWCNT in DMSO.
    Guan J; Martinez-Rubi Y; Dénommée S; Ruth D; Kingston CT; Daroszewska M; Barnes M; Simard B
    Nanotechnology; 2009 Jun; 20(24):245701. PubMed ID: 19471083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.