These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 12675792)

  • 1. MinD and role of the deviant Walker A motif, dimerization and membrane binding in oscillation.
    Lutkenhaus J; Sundaramoorthy M
    Mol Microbiol; 2003 Apr; 48(2):295-303. PubMed ID: 12675792
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of MinD mutations reveals residues required for MinE stimulation of the MinD ATPase and residues required for MinC interaction.
    Zhou H; Schulze R; Cox S; Saez C; Hu Z; Lutkenhaus J
    J Bacteriol; 2005 Jan; 187(2):629-38. PubMed ID: 15629934
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum.
    Hu Z; Lutkenhaus J
    Mol Microbiol; 2003 Jan; 47(2):345-55. PubMed ID: 12519187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of signature lysines in the deviant walker a motifs of the ArsA ATPase.
    Fu HL; Ajees AA; Rosen BP; Bhattacharjee H
    Biochemistry; 2010 Jan; 49(2):356-64. PubMed ID: 20000479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of the structure of the MinD-ATP complex reveals the orientation of MinD on the membrane and the relative location of the binding sites for MinE and MinC.
    Wu W; Park KT; Holyoak T; Lutkenhaus J
    Mol Microbiol; 2011 Mar; 79(6):1515-28. PubMed ID: 21231967
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Membrane localization of MinD is mediated by a C-terminal motif that is conserved across eubacteria, archaea, and chloroplasts.
    Szeto TH; Rowland SL; Rothfield LI; King GF
    Proc Natl Acad Sci U S A; 2002 Nov; 99(24):15693-8. PubMed ID: 12424340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dissecting the role of conformational change and membrane binding by the bacterial cell division regulator MinE in the stimulation of MinD ATPase activity.
    Ayed SH; Cloutier AD; McLeod LJ; Foo ACY; Damry AM; Goto NK
    J Biol Chem; 2017 Dec; 292(50):20732-20743. PubMed ID: 29066619
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A conserved polar region in the cell division site determinant MinD is required for responding to MinE-induced oscillation but not for localization within coiled arrays.
    Szeto J; Eng NF; Acharya S; Rigden MD; Dillon JA
    Res Microbiol; 2005; 156(1):17-29. PubMed ID: 15636744
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Positioning of the MinE binding site on the MinD surface suggests a plausible mechanism for activation of the Escherichia coli MinD ATPase during division site selection.
    Ma L; King GF; Rothfield L
    Mol Microbiol; 2004 Oct; 54(1):99-108. PubMed ID: 15458408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The bacterial cell division regulators MinD and MinC form polymers in the presence of nucleotide.
    Conti J; Viola MG; Camberg JL
    FEBS Lett; 2015 Jan; 589(2):201-6. PubMed ID: 25497011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of the asymmetric activation of the MinD ATPase by MinE.
    Park KT; Wu W; Lovell S; Lutkenhaus J
    Mol Microbiol; 2012 Jul; 85(2):271-81. PubMed ID: 22651575
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recruitment of MinC, an inhibitor of Z-ring formation, to the membrane in Escherichia coli: role of MinD and MinE.
    Hu Z; Saez C; Lutkenhaus J
    J Bacteriol; 2003 Jan; 185(1):196-203. PubMed ID: 12486056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of the ATP-dependent maturation factor of Ni,Fe-containing carbon monoxide dehydrogenases.
    Jeoung JH; Giese T; Grünwald M; Dobbek H
    J Mol Biol; 2010 Mar; 396(4):1165-79. PubMed ID: 20064527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CooC1 from Carboxydothermus hydrogenoformans is a nickel-binding ATPase.
    Jeoung JH; Giese T; Grünwald M; Dobbek H
    Biochemistry; 2009 Dec; 48(48):11505-13. PubMed ID: 19883128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MinC and FtsZ mutant analysis provides insight into MinC/MinD-mediated Z ring disassembly.
    Park KT; Dajkovic A; Wissel M; Du S; Lutkenhaus J
    J Biol Chem; 2018 Apr; 293(16):5834-5846. PubMed ID: 29414773
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MinC/MinD copolymers are not required for Min function.
    Park KT; Du S; Lutkenhaus J
    Mol Microbiol; 2015 Dec; 98(5):895-909. PubMed ID: 26268537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATP-dependent interactions between Escherichia coli Min proteins and the phospholipid membrane in vitro.
    Lackner LL; Raskin DM; de Boer PA
    J Bacteriol; 2003 Feb; 185(3):735-49. PubMed ID: 12533449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The switch I and II regions of MinD are required for binding and activating MinC.
    Zhou H; Lutkenhaus J
    J Bacteriol; 2004 Mar; 186(5):1546-55. PubMed ID: 14973039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolution of an ion-translocating ATPase.
    Rosen BP; Dey S; Dou D; Ji G; Kaur P; Ksenzenko MYu ; Silver S; Wu J
    Ann N Y Acad Sci; 1992 Nov; 671():257-72. PubMed ID: 1337674
    [No Abstract]   [Full Text] [Related]  

  • 20. Characterization of C-terminal structure of MinC and its implication in evolution of bacterial cell division.
    Yang S; Shen Q; Wang S; Song C; Lei Z; Han S; Zhang X; Zheng J; Jia Z
    Sci Rep; 2017 Aug; 7(1):7627. PubMed ID: 28790446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.