These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 12675797)

  • 1. An archaeal XPF repair endonuclease dependent on a heterotrimeric PCNA.
    Roberts JA; Bell SD; White MF
    Mol Microbiol; 2003 Apr; 48(2):361-71. PubMed ID: 12675797
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A heterotrimeric PCNA in the hyperthermophilic archaeon Sulfolobus solfataricus.
    Dionne I; Nookala RK; Jackson SP; Doherty AJ; Bell SD
    Mol Cell; 2003 Jan; 11(1):275-82. PubMed ID: 12535540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An archaeal endonuclease displays key properties of both eukaryal XPF-ERCC1 and Mus81.
    Roberts JA; White MF
    J Biol Chem; 2005 Feb; 280(7):5924-8. PubMed ID: 15591065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The XBP-Bax1 helicase-nuclease complex unwinds and cleaves DNA: implications for eukaryal and archaeal nucleotide excision repair.
    Rouillon C; White MF
    J Biol Chem; 2010 Apr; 285(14):11013-22. PubMed ID: 20139443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA end-directed and processive nuclease activities of the archaeal XPF enzyme.
    Roberts JA; White MF
    Nucleic Acids Res; 2005; 33(20):6662-70. PubMed ID: 16314325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replication protein A confers structure-specific endonuclease activities to the XPF-ERCC1 and XPG subunits of human DNA repair excision nuclease.
    Matsunaga T; Park CH; Bessho T; Mu D; Sancar A
    J Biol Chem; 1996 May; 271(19):11047-50. PubMed ID: 8626644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activity of individual ERCC1 and XPF subunits in DNA nucleotide excision repair.
    Gaillard PHL; Wood RD
    Nucleic Acids Res; 2001 Feb; 29(4):872-9. PubMed ID: 11160918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization of a clamp-loader complex homologous to eukaryotic replication factor C from the hyperthermophilic archaeon Sulfolobus solfataricus.
    Pisani FM; De Felice M; Carpentieri F; Rossi M
    J Mol Biol; 2000 Aug; 301(1):61-73. PubMed ID: 10926493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Archaeal DNA repair: paradigms and puzzles.
    White MF
    Biochem Soc Trans; 2003 Jun; 31(Pt 3):690-3. PubMed ID: 12773184
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The DNA repair endonuclease XPG binds to proliferating cell nuclear antigen (PCNA) and shares sequence elements with the PCNA-binding regions of FEN-1 and cyclin-dependent kinase inhibitor p21.
    Gary R; Ludwig DL; Cornelius HL; MacInnes MA; Park MS
    J Biol Chem; 1997 Sep; 272(39):24522-9. PubMed ID: 9305916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. X-ray and biochemical anatomy of an archaeal XPF/Rad1/Mus81 family nuclease: similarity between its endonuclease domain and restriction enzymes.
    Nishino T; Komori K; Ishino Y; Morikawa K
    Structure; 2003 Apr; 11(4):445-57. PubMed ID: 12679022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PCNA stimulates catalysis by structure-specific nucleases using two distinct mechanisms: substrate targeting and catalytic step.
    Hutton RD; Roberts JA; Penedo JC; White MF
    Nucleic Acids Res; 2008 Dec; 36(21):6720-7. PubMed ID: 18948279
    [TBL] [Abstract][Full Text] [Related]  

  • 13. On the mechanism of loading the PCNA sliding clamp by RFC.
    Dionne I; Brown NJ; Woodgate R; Bell SD
    Mol Microbiol; 2008 Apr; 68(1):216-22. PubMed ID: 18312273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A single amino acid substitution in the DNA-binding domain of Aeropyrum pernix DNA ligase impairs its interaction with proliferating cell nuclear antigen.
    Kiyonari S; Kamigochi T; Ishino Y
    Extremophiles; 2007 Sep; 11(5):675-84. PubMed ID: 17487442
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PCNA and XPF cooperate to distort DNA substrates.
    Hutton RD; Craggs TD; White MF; Penedo JC
    Nucleic Acids Res; 2010 Mar; 38(5):1664-75. PubMed ID: 20008103
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein-protein interactions leading to recruitment of the host DNA sliding clamp by the hyperthermophilic Sulfolobus islandicus rod-shaped virus 2.
    Gardner AF; Bell SD; White MF; Prangishvili D; Krupovic M
    J Virol; 2014 Jun; 88(12):7105-8. PubMed ID: 24696494
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular machines in archaeal DNA replication.
    Beattie TR; Bell SD
    Curr Opin Chem Biol; 2011 Oct; 15(5):614-9. PubMed ID: 21852183
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The active site of the DNA repair endonuclease XPF-ERCC1 forms a highly conserved nuclease motif.
    Enzlin JH; Schärer OD
    EMBO J; 2002 Apr; 21(8):2045-53. PubMed ID: 11953324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of an XPF endonuclease with and without DNA suggests a model for substrate recognition.
    Newman M; Murray-Rust J; Lally J; Rudolf J; Fadden A; Knowles PP; White MF; McDonald NQ
    EMBO J; 2005 Mar; 24(5):895-905. PubMed ID: 15719018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and properties of the crenarchaeal single-stranded DNA binding protein from Sulfolobus solfataricus.
    Wadsworth RI; White MF
    Nucleic Acids Res; 2001 Feb; 29(4):914-20. PubMed ID: 11160923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.