BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 12675917)

  • 1. The sensitivity of catecholamine release to botulinum toxin C1 and E suggests selective targeting of vesicles set into the readily releasable pool.
    Stigliani S; Raiteri L; Fassio A; Bonanno G
    J Neurochem; 2003 Apr; 85(2):409-21. PubMed ID: 12675917
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evidence for calcium-dependent vesicular transmitter release insensitive to tetanus toxin and botulinum toxin type F.
    Fassio A; Sala R; Bonanno G; Marchi M; Raiteri M
    Neuroscience; 1999 Mar; 90(3):893-902. PubMed ID: 10218789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Botulinum neurotoxin C1 cleaves both syntaxin and SNAP-25 in intact and permeabilized chromaffin cells: correlation with its blockade of catecholamine release.
    Foran P; Lawrence GW; Shone CC; Foster KA; Dolly JO
    Biochemistry; 1996 Feb; 35(8):2630-6. PubMed ID: 8611567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differential contribution of syntaxin 1 and SNAP-25 to secretion in noradrenergic and adrenergic chromaffin cells.
    Baltazar G; Tomé A; Carvalho AP; Duarte EP
    Eur J Cell Biol; 2000 Dec; 79(12):883-91. PubMed ID: 11152280
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A late phase of exocytosis from synaptosomes induced by elevated [Ca2+]i is not blocked by Clostridial neurotoxins.
    Ashton AC; Dolly JO
    J Neurochem; 2000 May; 74(5):1979-88. PubMed ID: 10800941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Presynaptic protein interactions in vivo: evidence from botulinum A, C, D and E action at frog neuromuscular junction.
    Raciborska DA; Trimble WS; Charlton MP
    Eur J Neurosci; 1998 Aug; 10(8):2617-28. PubMed ID: 9767392
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinct exocytotic responses of intact and permeabilised chromaffin cells after cleavage of the 25-kDa synaptosomal-associated protein (SNAP-25) or synaptobrevin by botulinum toxin A or B.
    Lawrence GW; Foran P; Dolly JO
    Eur J Biochem; 1996 Mar; 236(3):877-86. PubMed ID: 8665909
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Importance of two adjacent C-terminal sequences of SNAP-25 in exocytosis from intact and permeabilized chromaffin cells revealed by inhibition with botulinum neurotoxins A and E.
    Lawrence GW; Foran P; Mohammed N; DasGupta BR; Dolly JO
    Biochemistry; 1997 Mar; 36(11):3061-7. PubMed ID: 9115981
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ca2+-induced changes in SNAREs and synaptotagmin I correlate with triggered exocytosis from chromaffin cells: insights gleaned into the signal transduction using trypsin and botulinum toxins.
    Lawrence GW; Dolly JO
    J Cell Sci; 2002 Jul; 115(Pt 13):2791-800. PubMed ID: 12077369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Botulinum neurotoxin E-insensitive mutants of SNAP-25 fail to bind VAMP but support exocytosis.
    Washbourne P; Bortoletto N; Graham ME; Wilson MC; Burgoyne RD; Montecucco C
    J Neurochem; 1999 Dec; 73(6):2424-33. PubMed ID: 10582602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SNAP-25 is required for a late postdocking step in Ca2+-dependent exocytosis.
    Banerjee A; Kowalchyk JA; DasGupta BR; Martin TF
    J Biol Chem; 1996 Aug; 271(34):20227-30. PubMed ID: 8702751
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synaptobrevin I mediates exocytosis of CGRP from sensory neurons and inhibition by botulinum toxins reflects their anti-nociceptive potential.
    Meng J; Wang J; Lawrence G; Dolly JO
    J Cell Sci; 2007 Aug; 120(Pt 16):2864-74. PubMed ID: 17666428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of neurotransmitter release by clostridial neurotoxins correlates with specific proteolysis of synaptosomal proteins.
    Blasi J; Binz T; Yamasaki S; Link E; Niemann H; Jahn R
    J Physiol Paris; 1994; 88(4):235-41. PubMed ID: 7874084
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The t-SNAREs syntaxin 1 and SNAP-25 are present on organelles that participate in synaptic vesicle recycling.
    Walch-Solimena C; Blasi J; Edelmann L; Chapman ER; von Mollard GF; Jahn R
    J Cell Biol; 1995 Feb; 128(4):637-45. PubMed ID: 7860636
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ca2+ or Sr2+ partially rescues synaptic transmission in hippocampal cultures treated with botulinum toxin A and C, but not tetanus toxin.
    Capogna M; McKinney RA; O'Connor V; Gähwiler BH; Thompson SM
    J Neurosci; 1997 Oct; 17(19):7190-202. PubMed ID: 9295365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular scaffold reorganization at the transmitter release site with vesicle exocytosis or botulinum toxin C1.
    Stanley EF; Reese TS; Wang GZ
    Eur J Neurosci; 2003 Oct; 18(8):2403-7. PubMed ID: 14622203
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distinct kinetic changes in neurotransmitter release after SNARE protein cleavage.
    Sakaba T; Stein A; Jahn R; Neher E
    Science; 2005 Jul; 309(5733):491-4. PubMed ID: 16020741
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective cleavage of SNAREs in sensory neurons unveils protein complexes mediating peptide exocytosis triggered by different stimuli.
    Meng J; Dolly JO; Wang J
    Mol Neurobiol; 2014 Oct; 50(2):574-88. PubMed ID: 24604356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of calcium-dependent [3H]noradrenaline release from rat cerebrocortical synaptosomes by protein kinase C and modulation of the actin cytoskeleton.
    Walaas SI
    Neurochem Int; 1999 Mar; 34(3):221-33. PubMed ID: 10355489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Insights into a basis for incomplete inhibition by botulinum toxin A of Ca2+-evoked exocytosis from permeabilised chromaffin cells.
    Lawrence GW; Foran P; Oliver Dolly J
    Toxicology; 2002 Dec; 181-182():249-53. PubMed ID: 12505320
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.