These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 12676132)
1. Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Sankar V; Muthusamy R Neuroscience; 2003; 118(1):11-7. PubMed ID: 12676132 [TBL] [Abstract][Full Text] [Related]
2. Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Wu ZY; Hui GZ; Lu Y; Wu X; Guo LH Chin Med J (Engl); 2006 Dec; 119(24):2101-7. PubMed ID: 17199962 [TBL] [Abstract][Full Text] [Related]
3. Lineage-restricted neural precursors survive, migrate, and differentiate following transplantation into the injured adult spinal cord. Lepore AC; Fischer I Exp Neurol; 2005 Jul; 194(1):230-42. PubMed ID: 15899260 [TBL] [Abstract][Full Text] [Related]
4. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat. Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451 [TBL] [Abstract][Full Text] [Related]
5. Co-transplantation of bFGF-expressing amniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord-injured rats. Meng XT; Li C; Dong ZY; Liu JM; Li W; Liu Y; Xue H; Chen D Cell Biol Int; 2008 Dec; 32(12):1546-58. PubMed ID: 18849003 [TBL] [Abstract][Full Text] [Related]
6. Effects of glial transplantation on functional recovery following acute spinal cord injury. Lee KH; Yoon DH; Park YG; Lee BH J Neurotrauma; 2005 May; 22(5):575-89. PubMed ID: 15892602 [TBL] [Abstract][Full Text] [Related]
7. Differentiation and tropic/trophic effects of exogenous neural precursors in the adult spinal cord. Yan J; Welsh AM; Bora SH; Snyder EY; Koliatsos VE J Comp Neurol; 2004 Nov; 480(1):101-14. PubMed ID: 15514921 [TBL] [Abstract][Full Text] [Related]
8. Human neural stem cells promote corticospinal axons regeneration and synapse reformation in injured spinal cord of rats. Liang P; Jin LH; Liang T; Liu EZ; Zhao SG Chin Med J (Engl); 2006 Aug; 119(16):1331-8. PubMed ID: 16934177 [TBL] [Abstract][Full Text] [Related]
9. Acute transplantation of glial-restricted precursor cells into spinal cord contusion injuries: survival, differentiation, and effects on lesion environment and axonal regeneration. Hill CE; Proschel C; Noble M; Mayer-Proschel M; Gensel JC; Beattie MS; Bresnahan JC Exp Neurol; 2004 Dec; 190(2):289-310. PubMed ID: 15530870 [TBL] [Abstract][Full Text] [Related]
10. Cell adhesion molecule l1-transfected embryonic stem cells with enhanced survival support regrowth of corticospinal tract axons in mice after spinal cord injury. Chen J; Bernreuther C; Dihné M; Schachner M J Neurotrauma; 2005 Aug; 22(8):896-906. PubMed ID: 16083356 [TBL] [Abstract][Full Text] [Related]
11. Combined transplantation of neural stem cells and olfactory ensheathing cells for the repair of spinal cord injuries. Ao Q; Wang AJ; Chen GQ; Wang SJ; Zuo HC; Zhang XF Med Hypotheses; 2007; 69(6):1234-7. PubMed ID: 17548168 [TBL] [Abstract][Full Text] [Related]
12. Chronic transplantation of olfactory ensheathing cells promotes partial recovery after complete spinal cord transection in the rat. López-Vales R; Forés J; Navarro X; Verdú E Glia; 2007 Feb; 55(3):303-11. PubMed ID: 17096411 [TBL] [Abstract][Full Text] [Related]
13. Human adult olfactory neural progenitors rescue axotomized rodent rubrospinal neurons and promote functional recovery. Xiao M; Klueber KM; Lu C; Guo Z; Marshall CT; Wang H; Roisen FJ Exp Neurol; 2005 Jul; 194(1):12-30. PubMed ID: 15899240 [TBL] [Abstract][Full Text] [Related]
14. Regrowth of acute and chronic injured spinal pathways within supra-lesional post-traumatic nerve grafts. Decherchi P; Gauthier P Neuroscience; 2000; 101(1):197-210. PubMed ID: 11068148 [TBL] [Abstract][Full Text] [Related]
15. Transplantation of human marrow stromal cells and mono-nuclear bone marrow cells into the injured spinal cord: a comparative study. Samdani AF; Paul C; Betz RR; Fischer I; Neuhuber B Spine (Phila Pa 1976); 2009 Nov; 34(24):2605-12. PubMed ID: 19881401 [TBL] [Abstract][Full Text] [Related]
16. HAEC in the treatment of brain hemorrhage: a preliminary observation in rabbits. Zhou H; Mu Z; Chen X; Shi Z; Zha Z; Liu Y; Xu Z Int J Clin Exp Pathol; 2015; 8(6):6772-8. PubMed ID: 26261561 [TBL] [Abstract][Full Text] [Related]
18. Functional recovery in acute traumatic spinal cord injury after transplantation of human umbilical cord mesenchymal stem cells. Hu SL; Luo HS; Li JT; Xia YZ; Li L; Zhang LJ; Meng H; Cui GY; Chen Z; Wu N; Lin JK; Zhu G; Feng H Crit Care Med; 2010 Nov; 38(11):2181-9. PubMed ID: 20711072 [TBL] [Abstract][Full Text] [Related]
19. Functional recovery in traumatic spinal cord injury after transplantation of multineurotrophin-expressing glial-restricted precursor cells. Cao Q; Xu XM; Devries WH; Enzmann GU; Ping P; Tsoulfas P; Wood PM; Bunge MB; Whittemore SR J Neurosci; 2005 Jul; 25(30):6947-57. PubMed ID: 16049170 [TBL] [Abstract][Full Text] [Related]
20. Potential of human dental stem cells in repairing the complete transection of rat spinal cord. Yang C; Li X; Sun L; Guo W; Tian W J Neural Eng; 2017 Apr; 14(2):026005. PubMed ID: 28085005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]