BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 12676146)

  • 1. Embryonic geniculate ganglion neurons in culture have neurotrophin-specific electrophysiological properties.
    Al-Hadlaq SM; Bradley RM; MacCallum DK; Mistretta CM
    Neuroscience; 2003; 118(1):145-59. PubMed ID: 12676146
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinctive spatiotemporal expression patterns for neurotrophins develop in gustatory papillae and lingual tissues in embryonic tongue organ cultures.
    Nosrat CA; MacCallum DK; Mistretta CM
    Cell Tissue Res; 2001 Jan; 303(1):35-45. PubMed ID: 11236003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distinctive neurophysiological properties of embryonic trigeminal and geniculate neurons in culture.
    Grigaliunas A; Bradley RM; MacCallum DK; Mistretta CM
    J Neurophysiol; 2002 Oct; 88(4):2058-74. PubMed ID: 12364528
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Each sensory nerve arising from the geniculate ganglion expresses a unique fingerprint of neurotrophin and neurotrophin receptor genes.
    Farbman AI; Guagliardo N; Sollars SI; Hill DL
    J Neurosci Res; 2004 Dec; 78(5):659-67. PubMed ID: 15495212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epithelial overexpression of BDNF or NT4 disrupts targeting of taste neurons that innervate the anterior tongue.
    Krimm RF; Miller KK; Kitzman PH; Davis BM; Albers KM
    Dev Biol; 2001 Apr; 232(2):508-21. PubMed ID: 11401409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distinct roles for Sema3A, Sema3F, and an unidentified trophic factor in controlling the advance of geniculate axons to gustatory lingual epithelium.
    Vilbig R; Cosmano J; Giger R; Rochlin MW
    J Neurocytol; 2004 Dec; 33(6):591-606. PubMed ID: 16217616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotrophin-4 is more potent than brain-derived neurotrophic factor in promoting, attracting and suppressing geniculate ganglion neurite outgrowth.
    Runge EM; Hoshino N; Biehl MJ; Ton S; Rochlin MW
    Dev Neurosci; 2012; 34(5):389-401. PubMed ID: 23151843
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lingual and palatal gustatory afferents each depend on both BDNF and NT-4, but the dependence is greater for lingual than palatal afferents.
    Patel AV; Huang T; Krimm RF
    J Comp Neurol; 2010 Aug; 518(16):3290-301. PubMed ID: 20575060
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lingual deficits in neurotrophin double knockout mice.
    Nosrat IV; Agerman K; Marinescu A; Ernfors P; Nosrat CA
    J Neurocytol; 2004 Dec; 33(6):607-15. PubMed ID: 16217617
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Taste placodes are primary targets of geniculate but not trigeminal sensory axons in mouse developing tongue.
    Mbiene JP
    J Neurocytol; 2004 Dec; 33(6):617-29. PubMed ID: 16217618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of brain-derived neurotrophic factor and neurotrophin 3 mRNA in lingual papillae and taste buds indicates roles in gustatory and somatosensory innervation.
    Nosrat CA; Ebendal T; Olson L
    J Comp Neurol; 1996 Dec; 376(4):587-602. PubMed ID: 8978472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of neurotrophin and repellent sensitivities of early embryonic geniculate and trigeminal axons.
    Rochlin MW; O'Connor R; Giger RJ; Verhaagen J; Farbman AI
    J Comp Neurol; 2000 Jul; 422(4):579-93. PubMed ID: 10861527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exuberant neuronal convergence onto reduced taste bud targets with preservation of neural specificity in mice overexpressing neurotrophin in the tongue epithelium.
    Zaidi FN; Krimm RF; Whitehead MC
    J Neurosci; 2007 Dec; 27(50):13875-81. PubMed ID: 18077699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Taste neurons consist of both a large TrkB-receptor-dependent and a small TrkB-receptor-independent subpopulation.
    Fei D; Krimm RF
    PLoS One; 2013; 8(12):e83460. PubMed ID: 24386206
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NT4/5 mutant mice have deficiency in gustatory papillae and taste bud formation.
    Liebl DJ; Mbiene JP; Parada LF
    Dev Biol; 1999 Sep; 213(2):378-89. PubMed ID: 10479455
    [TBL] [Abstract][Full Text] [Related]  

  • 16. BDNF and NT4 play interchangeable roles in gustatory development.
    Huang T; Krimm RF
    Dev Biol; 2014 Feb; 386(2):308-20. PubMed ID: 24378336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of neurotrophin-induced axonal responses via Rho GTPases.
    Ozdinler PH; Erzurumlu RS
    J Comp Neurol; 2001 Oct; 438(4):377-87. PubMed ID: 11559894
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of the neurotrophins nerve growth factor, neurotrophin-3, and brain-derived neurotrophic factor (BDNF) on neurite growth from adult sensory neurons in compartmented cultures.
    Kimpinski K; Campenot RB; Mearow K
    J Neurobiol; 1997 Oct; 33(4):395-410. PubMed ID: 9322157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Initial innervation of embryonic rat tongue and developing taste papillae: nerves follow distinctive and spatially restricted pathways.
    Mbiene JP; Mistretta CM
    Acta Anat (Basel); 1997; 160(3):139-58. PubMed ID: 9718388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combined application of brain-derived neurotrophic factor and neurotrophin-3 and its impact on spiral ganglion neuron firing properties and hyperpolarization-activated currents.
    Needham K; Nayagam BA; Minter RL; O'Leary SJ
    Hear Res; 2012 Sep; 291(1-2):1-14. PubMed ID: 22796476
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.