These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 12676670)
1. 5-keto-D-gluconate production is catalyzed by a quinoprotein glycerol dehydrogenase, major polyol dehydrogenase, in gluconobacter species. Matsushita K; Fujii Y; Ano Y; Toyama H; Shinjoh M; Tomiyama N; Miyazaki T; Sugisawa T; Hoshino T; Adachi O Appl Environ Microbiol; 2003 Apr; 69(4):1959-66. PubMed ID: 12676670 [TBL] [Abstract][Full Text] [Related]
2. New developments in oxidative fermentation. Adachi O; Moonmangmee D; Toyama H; Yamada M; Shinagawa E; Matsushita K Appl Microbiol Biotechnol; 2003 Feb; 60(6):643-53. PubMed ID: 12664142 [TBL] [Abstract][Full Text] [Related]
3. New quinoproteins in oxidative fermentation. Adachi O; Moonmangmee D; Shinagawa E; Toyama H; Yamada M; Matsushita K Biochim Biophys Acta; 2003 Apr; 1647(1-2):10-7. PubMed ID: 12686101 [TBL] [Abstract][Full Text] [Related]
4. Membrane-bound glycerol dehydrogenase catalyzes oxidation of D-pentonates to 4-keto-D-pentonates, D-fructose to 5-keto-D-fructose, and D-psicose to 5-keto-D-psicose. Ano Y; Hours RA; Akakabe Y; Kataoka N; Yakushi T; Matsushita K; Adachi O Biosci Biotechnol Biochem; 2017 Feb; 81(2):411-418. PubMed ID: 27849146 [TBL] [Abstract][Full Text] [Related]
5. Membrane-bound sugar alcohol dehydrogenase in acetic acid bacteria catalyzes L-ribulose formation and NAD-dependent ribitol dehydrogenase is independent of the oxidative fermentation. Adachi O; Fujii Y; Ano Y; Moonmangmee D; Toyama H; Shinagawa E; Theeragool G; Lotong N; Matsushita K Biosci Biotechnol Biochem; 2001 Jan; 65(1):115-25. PubMed ID: 11272814 [TBL] [Abstract][Full Text] [Related]
6. Cloning of a gluconate/polyol dehydrogenase gene from Gluconobacter suboxydans IFO 12528, characterisation of the enzyme and its use for the production of 5-ketogluconate in a recombinant Escherichia coli strain. Salusjärvi T; Povelainen M; Hvorslev N; Eneyskaya EV; Kulminskaya AA; Shabalin KA; Neustroev KN; Kalkkinen N; Miasnikov AN Appl Microbiol Biotechnol; 2004 Aug; 65(3):306-14. PubMed ID: 15060755 [TBL] [Abstract][Full Text] [Related]
7. Membrane-bound D-sorbitol dehydrogenase of Gluconobacter suboxydans IFO 3255--enzymatic and genetic characterization. Hoshino T; Sugisawa T; Shinjoh M; Tomiyama N; Miyazaki T Biochim Biophys Acta; 2003 Apr; 1647(1-2):278-88. PubMed ID: 12686146 [TBL] [Abstract][Full Text] [Related]
8. Screening of thermotolerant Gluconobacter strains for production of 5-keto-D-gluconic acid and disruption of flavin adenine dinucleotide-containing D-gluconate dehydrogenase. Saichana I; Moonmangmee D; Adachi O; Matsushita K; Toyama H Appl Environ Microbiol; 2009 Jul; 75(13):4240-7. PubMed ID: 19411430 [TBL] [Abstract][Full Text] [Related]
9. Selective, high conversion of D-glucose to 5-keto-D-gluoconate by Gluconobacter suboxydans. Ano Y; Shinagawa E; Adachi O; Toyama H; Yakushi T; Matsushita K Biosci Biotechnol Biochem; 2011; 75(3):586-9. PubMed ID: 21389606 [TBL] [Abstract][Full Text] [Related]
10. Characterisation of a secondary alcohol dehydrogenase from Xanthomonas campestris DSM 3586. Salusjärvi T; Hvorslev N; Miasnikov AN Appl Microbiol Biotechnol; 2005 Mar; 66(6):664-7. PubMed ID: 15565334 [TBL] [Abstract][Full Text] [Related]
11. Membrane-bound, 2-keto-D-gluconate-yielding D-gluconate dehydrogenase from "Gluconobacter dioxyacetonicus" IFO 3271: molecular properties and gene disruption. Toyama H; Furuya N; Saichana I; Ano Y; Adachi O; Matsushita K Appl Environ Microbiol; 2007 Oct; 73(20):6551-6. PubMed ID: 17720837 [TBL] [Abstract][Full Text] [Related]
12. Ketogluconate production by Gluconobacter strains: enzymes and biotechnological applications. Kataoka N Biosci Biotechnol Biochem; 2024 Apr; 88(5):499-508. PubMed ID: 38323387 [TBL] [Abstract][Full Text] [Related]
13. Membrane-bound quinoprotein D-arabitol dehydrogenase of Gluconobacter suboxydans IFO 3257: a versatile enzyme for the oxidative fermentation of various ketoses. Adachi O; Fujii Y; Ghaly MF; Toyama H; Shinagawa E; Matsushita K Biosci Biotechnol Biochem; 2001 Dec; 65(12):2755-62. PubMed ID: 11826974 [TBL] [Abstract][Full Text] [Related]
14. Aldopentoses as new substrates for the membrane-bound, pyrroloquinoline quinone-dependent glycerol (polyol) dehydrogenase of Gluconobacter sp. Yakushi T; Terada Y; Ozaki S; Kataoka N; Akakabe Y; Adachi O; Matsutani M; Matsushita K Appl Microbiol Biotechnol; 2018 Apr; 102(7):3159-3171. PubMed ID: 29468297 [TBL] [Abstract][Full Text] [Related]
15. Efficient Production of 2,5-Diketo-d-Gluconate via Heterologous Expression of 2-Ketogluconate Dehydrogenase in Gluconobacter japonicus. Kataoka N; Matsutani M; Yakushi T; Matsushita K Appl Environ Microbiol; 2015 May; 81(10):3552-60. PubMed ID: 25769838 [TBL] [Abstract][Full Text] [Related]
16. Main polyol dehydrogenase of Gluconobacter suboxydans IFO 3255, membrane-bound D-sorbitol dehydrogenase, that needs product of upstream gene, sldB, for activity. Shinjoh M; Tomiyama N; Miyazaki T; Hoshino T Biosci Biotechnol Biochem; 2002 Nov; 66(11):2314-22. PubMed ID: 12506966 [TBL] [Abstract][Full Text] [Related]
17. 5-Keto-D-fructose production from sugar alcohol by isolated wild strain Adachi O; Nguyen TM; Hours RA; Kataoka N; Matsushita K; Akakabe Y; Yakushi T Biosci Biotechnol Biochem; 2020 Aug; 84(8):1745-1747. PubMed ID: 32427050 [TBL] [Abstract][Full Text] [Related]
18. Molecular cloning and functional expression of d-arabitol dehydrogenase gene from Gluconobacter oxydans in Escherichia coli. Cheng H; Jiang N; Shen A; Feng Y FEMS Microbiol Lett; 2005 Nov; 252(1):35-42. PubMed ID: 16165327 [TBL] [Abstract][Full Text] [Related]
20. Purification and properties of two different dihydroxyacetone reductases in Gluconobacter suboxydans grown on glycerol. Adachi O; Ano Y; Shinagawa E; Matsushita K Biosci Biotechnol Biochem; 2008 Aug; 72(8):2124-32. PubMed ID: 18685208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]