BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 12676733)

  • 21. The bioactive dipeptide anserine is transported by human proton-coupled peptide transporters.
    Geissler S; Zwarg M; Knütter I; Markwardt F; Brandsch M
    FEBS J; 2010 Feb; 277(3):790-5. PubMed ID: 20067523
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Peptide transport in the mammary gland: expression and distribution of PEPT2 mRNA and protein.
    Groneberg DA; Döring F; Theis S; Nickolaus M; Fischer A; Daniel H
    Am J Physiol Endocrinol Metab; 2002 May; 282(5):E1172-9. PubMed ID: 11934684
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Peptide transporters in the intestine and the kidney.
    Leibach FH; Ganapathy V
    Annu Rev Nutr; 1996; 16():99-119. PubMed ID: 8839921
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures.
    Shu C; Shen H; Hopfer U; Smith DE
    Drug Metab Dispos; 2001 Oct; 29(10):1307-15. PubMed ID: 11560874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Di/tri-peptide transporters as drug delivery targets: regulation of transport under physiological and patho-physiological conditions.
    Nielsen CU; Brodin B
    Curr Drug Targets; 2003 Jul; 4(5):373-88. PubMed ID: 12816347
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms.
    Döring F; Dorn D; Bachfischer U; Amasheh S; Herget M; Daniel H
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):773-9. PubMed ID: 9003562
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Driving force for peptide transport in mammalian intestine and kidney.
    Ganapathy V; Miyamoto Y; Leibach FH
    Beitr Infusionther Klin Ernahr; 1987; 17():54-68. PubMed ID: 3318802
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Transport of cefadroxil in rat kidney brush-border membranes is mediated by two electrogenic H+-coupled systems.
    Ries M; Wenzel U; Daniel H
    J Pharmacol Exp Ther; 1994 Dec; 271(3):1327-33. PubMed ID: 7996442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression and functional characterization of the mammalian intestinal peptide transporter PepT1 in the methylotropic yeast Pichia pastoris.
    Döring F; Theis S; Daniel H
    Biochem Biophys Res Commun; 1997 Mar; 232(3):656-62. PubMed ID: 9126331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cloning and characterization of the gene encoding the mouse peptide transporter PEPT2.
    Rubio-Aliaga I; Boll M; Daniel H
    Biochem Biophys Res Commun; 2000 Sep; 276(2):734-41. PubMed ID: 11027540
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transport of angiotensin-converting enzyme inhibitors by H+/peptide transporters revisited.
    Knütter I; Wollesky C; Kottra G; Hahn MG; Fischer W; Zebisch K; Neubert RH; Daniel H; Brandsch M
    J Pharmacol Exp Ther; 2008 Nov; 327(2):432-41. PubMed ID: 18713951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transport characteristics of differently charged cephalosporin antibiotics in oocytes expressing the cloned intestinal peptide transporter PepT1 and in human intestinal Caco-2 cells.
    Wenzel U; Gebert I; Weintraut H; Weber WM; Clauss W; Daniel H
    J Pharmacol Exp Ther; 1996 May; 277(2):831-9. PubMed ID: 8627565
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney.
    Shen H; Smith DE; Yang T; Huang YG; Schnermann JB; Brosius FC
    Am J Physiol; 1999 May; 276(5):F658-65. PubMed ID: 10330047
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Sodium cotransport processes in renal epithelial cell lines.
    Rabito CA
    Miner Electrolyte Metab; 1986; 12(1):32-41. PubMed ID: 2421146
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted disruption of the peptide transporter Pept2 gene in mice defines its physiological role in the kidney.
    Rubio-Aliaga I; Frey I; Boll M; Groneberg DA; Eichinger HM; Balling R; Daniel H
    Mol Cell Biol; 2003 May; 23(9):3247-52. PubMed ID: 12697824
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epidermal growth factor decreases PEPT2 transport capacity and expression in the rat kidney proximal tubule cell line SKPT0193 cl.2.
    Bravo SA; Nielsen CU; Amstrup J; Frokjaer S; Brodin B
    Am J Physiol Renal Physiol; 2004 Feb; 286(2):F385-93. PubMed ID: 14559717
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Citrate transport by the kidney and intestine.
    Pajor AM
    Semin Nephrol; 1999 Mar; 19(2):195-200. PubMed ID: 10192253
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Physiological and pharmacological implications of peptide transporters, PEPT1 and PEPT2.
    Inui K; Terada T; Masuda S; Saito H
    Nephrol Dial Transplant; 2000; 15 Suppl 6():11-3. PubMed ID: 11143972
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carrier-mediated reabsorption of small peptides in renal proximal tubule.
    Ganapathy V; Leibach FH
    Am J Physiol; 1986 Dec; 251(6 Pt 2):F945-53. PubMed ID: 3538905
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cellular and molecular mechanisms of renal peptide transport.
    Daniel H; Herget M
    Am J Physiol; 1997 Jul; 273(1 Pt 2):F1-8. PubMed ID: 9249586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.