BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 12677015)

  • 1. ATP-sensitive potassium channels mediate dilatation of basilar artery in response to intracellular acidification in vivo.
    Santa N; Kitazono T; Ago T; Ooboshi H; Kamouchi M; Wakisaka M; Ibayashi S; Iida M
    Stroke; 2003 May; 34(5):1276-80. PubMed ID: 12677015
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of nitric oxide and potassium channel agonists and inhibitors on basilar artery diameter.
    Sobey CG; Faraci FM
    Am J Physiol; 1997 Jan; 272(1 Pt 2):H256-62. PubMed ID: 9038945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of K(ATP)-channels in rat basilar and middle cerebral arteries: studies of vasomotor responses and mRNA expression.
    Jansen-Olesen I; Mortensen CH; El-Bariaki N; Ploug KB
    Eur J Pharmacol; 2005 Oct; 523(1-3):109-18. PubMed ID: 16226739
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arachidonate dilates basilar artery by lipoxygenase-dependent mechanism and activation of K(+) channels.
    Faraci FM; Sobey CG; Chrissobolis S; Lund DD; Heistad DD; Weintraub NL
    Am J Physiol Regul Integr Comp Physiol; 2001 Jul; 281(1):R246-53. PubMed ID: 11404300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of ATP-sensitive K+ channels in CGRP-induced dilatation of basilar artery in vivo.
    Kitazono T; Heistad DD; Faraci FM
    Am J Physiol; 1993 Aug; 265(2 Pt 2):H581-5. PubMed ID: 8368361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of Ca(2+)-activated K+ channels in acetylcholine-induced dilatation of the basilar artery in vivo.
    Kitazono T; Ibayashi S; Nagao T; Fujii K; Fujishima M
    Br J Pharmacol; 1997 Jan; 120(1):102-6. PubMed ID: 9117083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of Na(+)/H(+) exchanger in dilator responses of rat basilar artery in vivo.
    Kitazono T; Kamouchi M; Ago T; Ooboshi H; Nakamura H; Fujishima M; Ibayashi S
    Brain Res; 2001 Jul; 906(1-2):101-6. PubMed ID: 11430866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of ATP-sensitive potassium channels in the basilar artery.
    Faraci FM; Heistad DD
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H8-13. PubMed ID: 8430866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of inwardly rectifying K(+) channels in K(+)-induced cerebral vasodilatation in vivo.
    Chrissobolis S; Ziogas J; Chu Y; Faraci FM; Sobey CG
    Am J Physiol Heart Circ Physiol; 2000 Dec; 279(6):H2704-12. PubMed ID: 11087224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of potassium channels in relaxations of isolated canine basilar arteries to acidosis.
    Kinoshita H; Katusic ZS
    Stroke; 1997 Feb; 28(2):433-7; discussion 437-8. PubMed ID: 9040702
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ATP-sensitive potassium channels in the basilar artery during chronic hypertension.
    Kitazono T; Heistad DD; Faraci FM
    Hypertension; 1993 Nov; 22(5):677-81. PubMed ID: 8225527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inhibitory effect of 4-aminopyridine on responses of the basilar artery to nitric oxide.
    Sobey CG; Faraci FM
    Br J Pharmacol; 1999 Mar; 126(6):1437-43. PubMed ID: 10217538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hypercapnic acidosis activates KATP channels in vascular smooth muscles.
    Wang X; Wu J; Li L; Chen F; Wang R; Jiang C
    Circ Res; 2003 Jun; 92(11):1225-32. PubMed ID: 12738754
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of norepinephrine on rat basilar artery in vivo.
    Kitazono T; Faraci FM; Heistad DD
    Am J Physiol; 1993 Jan; 264(1 Pt 2):H178-82. PubMed ID: 8430844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activation of protease-activated receptor-2 (PAR-2) elicits nitric oxide-dependent dilatation of the basilar artery in vivo.
    Sobey CG; Cocks TM
    Stroke; 1998 Jul; 29(7):1439-44. PubMed ID: 9660401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of ATP-sensitive potassium channels in brain stem circulation during hypotension.
    Toyoda K; Fujii K; Ibayashi S; Kitazono T; Nagao T; Fujishima M
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1342-6. PubMed ID: 9321824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A key role for the subunit SUR2B in the preferential activation of vascular KATP channels by isoflurane.
    Fujita H; Ogura T; Tamagawa M; Uemura H; Sato T; Ishida A; Imamaki M; Kimura F; Miyazaki M; Nakaya H
    Br J Pharmacol; 2006 Nov; 149(5):573-80. PubMed ID: 17001304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inhibitory effects of protein kinase C on inwardly rectifying K+- and ATP-sensitive K+ channel-mediated responses of the basilar artery.
    Chrissobolis S; Sobey CG
    Stroke; 2002 Jun; 33(6):1692-7. PubMed ID: 12053013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pharmacological and molecular comparison of K(ATP) channels in rat basilar and middle cerebral arteries.
    Ploug KB; Edvinsson L; Olesen J; Jansen-Olesen I
    Eur J Pharmacol; 2006 Dec; 553(1-3):254-62. PubMed ID: 17101127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Matrix metalloproteinase 2-induced venous dilation via hyperpolarization and activation of K+ channels: relevance to varicose vein formation.
    Raffetto JD; Ross RL; Khalil RA
    J Vasc Surg; 2007 Feb; 45(2):373-80. PubMed ID: 17264019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.