These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
697 related articles for article (PubMed ID: 12677313)
1. The effect of a contralateral contraction on maximal voluntary activation and central fatigue in elbow flexor muscles. Todd G; Petersen NT; Taylor JL; Gandevia SC Exp Brain Res; 2003 Jun; 150(3):308-13. PubMed ID: 12677313 [TBL] [Abstract][Full Text] [Related]
2. The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. Søgaard K; Gandevia SC; Todd G; Petersen NT; Taylor JL J Physiol; 2006 Jun; 573(Pt 2):511-23. PubMed ID: 16556656 [TBL] [Abstract][Full Text] [Related]
3. Supraspinal factors in human muscle fatigue: evidence for suboptimal output from the motor cortex. Gandevia SC; Allen GM; Butler JE; Taylor JL J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):529-36. PubMed ID: 8821149 [TBL] [Abstract][Full Text] [Related]
4. Sustained contraction at very low forces produces prominent supraspinal fatigue in human elbow flexor muscles. Smith JL; Martin PG; Gandevia SC; Taylor JL J Appl Physiol (1985); 2007 Aug; 103(2):560-8. PubMed ID: 17463302 [TBL] [Abstract][Full Text] [Related]
5. The origin of activity in the biceps brachii muscle during voluntary contractions of the contralateral elbow flexor muscles. Zijdewind I; Butler JE; Gandevia SC; Taylor JL Exp Brain Res; 2006 Nov; 175(3):526-35. PubMed ID: 16924489 [TBL] [Abstract][Full Text] [Related]
6. Changes in motor cortical excitability during human muscle fatigue. Taylor JL; Butler JE; Allen GM; Gandevia SC J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):519-28. PubMed ID: 8821148 [TBL] [Abstract][Full Text] [Related]
7. Supraspinal fatigue does not explain the sex difference in muscle fatigue of maximal contractions. Hunter SK; Butler JE; Todd G; Gandevia SC; Taylor JL J Appl Physiol (1985); 2006 Oct; 101(4):1036-44. PubMed ID: 16728525 [TBL] [Abstract][Full Text] [Related]
8. Measurement of voluntary activation of fresh and fatigued human muscles using transcranial magnetic stimulation. Todd G; Taylor JL; Gandevia SC J Physiol; 2003 Sep; 551(Pt 2):661-71. PubMed ID: 12909682 [TBL] [Abstract][Full Text] [Related]
9. Altered responses of human elbow flexors to peripheral-nerve and cortical stimulation during a sustained maximal voluntary contraction. Taylor JL; Butler JE; Gandevia SC Exp Brain Res; 1999 Jul; 127(1):108-15. PubMed ID: 10424420 [TBL] [Abstract][Full Text] [Related]
10. Anal sphincter fatigue: is the mechanism peripheral or central? Schabrun SM; Stafford RE; Hodges PW Neurourol Urodyn; 2011 Nov; 30(8):1550-6. PubMed ID: 21780170 [TBL] [Abstract][Full Text] [Related]
11. Effects of fatigue on corticospinal excitability of the human knee extensors. Kennedy DS; McNeil CJ; Gandevia SC; Taylor JL Exp Physiol; 2016 Dec; 101(12):1552-1564. PubMed ID: 27652591 [TBL] [Abstract][Full Text] [Related]
12. Enhanced serotonin availability amplifies fatigue perception and modulates the TMS-induced silent period during sustained low-intensity elbow flexions. Thorstensen JR; Taylor JL; Tucker MG; Kavanagh JJ J Physiol; 2020 Jul; 598(13):2685-2701. PubMed ID: 32243582 [TBL] [Abstract][Full Text] [Related]
13. People with multiple sclerosis have reduced TMS-evoked motor cortical output compared with healthy individuals during fatiguing submaximal contractions. Brotherton EJ; Sabapathy S; Mckeown DJ; Kavanagh JJ J Neurophysiol; 2022 Jul; 128(1):105-117. PubMed ID: 35675447 [TBL] [Abstract][Full Text] [Related]
14. Short-interval cortical inhibition and intracortical facilitation during submaximal voluntary contractions changes with fatigue. Hunter SK; McNeil CJ; Butler JE; Gandevia SC; Taylor JL Exp Brain Res; 2016 Sep; 234(9):2541-51. PubMed ID: 27165508 [TBL] [Abstract][Full Text] [Related]
15. Voluntary muscle activation in people with multiple sclerosis is reduced across a wide range of forces following maximal effort-fatiguing contractions. Brotherton EJ; Sabapathy S; Heshmat S; Kavanagh JJ J Neurophysiol; 2023 Nov; 130(5):1162-1173. PubMed ID: 37818597 [TBL] [Abstract][Full Text] [Related]
16. Anodal transcranial direct current stimulation enhances time to task failure of a submaximal contraction of elbow flexors without changing corticospinal excitability. Abdelmoula A; Baudry S; Duchateau J Neuroscience; 2016 May; 322():94-103. PubMed ID: 26892298 [TBL] [Abstract][Full Text] [Related]
17. Central fatigue and motor cortical excitability during repeated shortening and lengthening actions. Löscher WN; Nordlund MM Muscle Nerve; 2002 Jun; 25(6):864-72. PubMed ID: 12115976 [TBL] [Abstract][Full Text] [Related]
18. Fatigue-sensitive afferents inhibit extensor but not flexor motoneurons in humans. Martin PG; Smith JL; Butler JE; Gandevia SC; Taylor JL J Neurosci; 2006 May; 26(18):4796-802. PubMed ID: 16672652 [TBL] [Abstract][Full Text] [Related]
19. Hyperthermia: a failure of the motor cortex and the muscle. Todd G; Butler JE; Taylor JL; Gandevia SC J Physiol; 2005 Mar; 563(Pt 2):621-31. PubMed ID: 15613373 [TBL] [Abstract][Full Text] [Related]
20. Use of motor cortex stimulation to measure simultaneously the changes in dynamic muscle properties and voluntary activation in human muscles. Todd G; Taylor JL; Butler JE; Martin PG; Gorman RB; Gandevia SC J Appl Physiol (1985); 2007 May; 102(5):1756-66. PubMed ID: 17218428 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]