These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 12677374)

  • 1. Statistical model for predicting pesticide penetration in woven fabrics used for chemical protective clothing.
    Zhang X; Raheel M
    Bull Environ Contam Toxicol; 2003 Apr; 70(4):652-9. PubMed ID: 12677374
    [No Abstract]   [Full Text] [Related]  

  • 2. Statistical model of pesticide penetration through woven work clothing fabrics.
    Lee S; Obendorf SK
    Arch Environ Contam Toxicol; 2005 Aug; 49(2):266-73. PubMed ID: 16059749
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance of different work clothing types for reducing skin exposure to pesticides during open field treatment.
    Protano C; Guidotti M; Vitali M
    Bull Environ Contam Toxicol; 2009 Jul; 83(1):115-9. PubMed ID: 19424648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Derivation of single layer clothing penetration factors from the pesticide handlers exposure database.
    Driver J; Ross J; Mihlan G; Lunchick C; Landenberger B
    Regul Toxicol Pharmacol; 2007 Nov; 49(2):125-37. PubMed ID: 17822819
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protective clothing for pesticide operators: part I--selection of a reference test chemical for penetration testing.
    Shaw A; Schiffelbein P
    Int J Occup Saf Ergon; 2016; 22(1):1-6. PubMed ID: 26327158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Training and other predictors of personal protective equipment use in Australian grain farmers using pesticides.
    Macfarlane E; Chapman A; Benke G; Meaklim J; Sim M; McNeil J
    Occup Environ Med; 2008 Feb; 65(2):141-6. PubMed ID: 17704194
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protective clothing for pesticide operators: part II--data analysis of fabric characteristics.
    Shaw A; Schiffelbein P
    Int J Occup Saf Ergon; 2016; 22(1):7-11. PubMed ID: 26327159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Barrier efficacy of woven and nonwoven fabrics used for protective clothing: predictive models.
    Jain R; Raheel M
    Bull Environ Contam Toxicol; 2003 Sep; 71(3):437-46. PubMed ID: 14567567
    [No Abstract]   [Full Text] [Related]  

  • 9. [Dermal exposure to pesticides among women working in Polish greenhouses using cotton patches].
    Jurewicz J; Hanke W; Sobala W; Ligocka D
    Med Pr; 2008; 59(3):197-202. PubMed ID: 18846990
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of exposure time on the sorption of pesticide emulsifiable concentrates through microporous fabrics.
    Shaw A; Hill KR
    Bull Environ Contam Toxicol; 1991 Jan; 46(1):45-52. PubMed ID: 2001492
    [No Abstract]   [Full Text] [Related]  

  • 11. Comparison of gravimetric and gas chromatographic methods for assessing performance of textile materials against liquid pesticide penetration.
    Shaw A; Abbi R
    Int J Occup Saf Ergon; 2004; 10(3):255-61. PubMed ID: 15377410
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reduction in human exposure to pesticide using traditional work clothing fabrics with chemical finishing: carboxymethylation and starch.
    Csiszár E; Borsa J; Rácz I; Obendorf SK
    Arch Environ Contam Toxicol; 1998 Jul; 35(1):129-34. PubMed ID: 9601930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Filtering performances of 20 protective fabrics against solid aerosols.
    Wingert L; Cloutier Y; Hallé S; Bahloul A; Tessier D; Giraudel JL; Dolez P; Tuduri L
    J Occup Environ Hyg; 2019 Aug; 16(8):592-606. PubMed ID: 31283417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Viability of textile systems for hand and body protection: effects of chemical interaction, wear, and storage conditions.
    Raheel M; Dai GX
    Bull Environ Contam Toxicol; 2002 Aug; 69(2):164-72. PubMed ID: 12107691
    [No Abstract]   [Full Text] [Related]  

  • 15. Use of manganese as tracer in the determination of respiratory exposure and relative importance of exposure routes in the safety of pesticide applicators in citrus orchards.
    Oliveira ML; Machado-Neto JG
    Bull Environ Contam Toxicol; 2003 Mar; 70(3):415-21. PubMed ID: 12592512
    [No Abstract]   [Full Text] [Related]  

  • 16. Kinetic transport of pesticide from contaminated fabric through a model skin.
    Obendorf SK; Csiszár E; Maneefuangfoo D; Borsa J
    Arch Environ Contam Toxicol; 2003 Aug; 45(2):283-8. PubMed ID: 14565588
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of fabric characteristics on pesticide penetration through selected apparel fabrics.
    Leonas KK; Easter EP; DeJonge JO
    Bull Environ Contam Toxicol; 1989 Aug; 43(2):231-8. PubMed ID: 2775891
    [No Abstract]   [Full Text] [Related]  

  • 18. Meta-modeling of the pesticide fate model MACRO for groundwater exposure assessments using artificial neural networks.
    Stenemo F; Lindahl AM; Gärdenäs A; Jarvis N
    J Contam Hydrol; 2007 Aug; 93(1-4):270-83. PubMed ID: 17531347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Loss of effectiveness of protective clothing after its use in pesticide sprays and its multiple washes.
    Espanhol-Soares M; Teodoro de Oliveira M; Machado-Neto JG
    J Occup Environ Hyg; 2017 Feb; 14(2):113-123. PubMed ID: 27541175
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pesticide protective clothing.
    Easter EP; Nigg HN
    Rev Environ Contam Toxicol; 1992; 129():1-16. PubMed ID: 1410691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.