BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 12677398)

  • 1. Quantitative structure-toxicity relationships for substituted aromatic compounds to Vibrio fischeri.
    Lu GH; Yuan X; Wang C
    Bull Environ Contam Toxicol; 2003 Apr; 70(4):832-8. PubMed ID: 12677398
    [No Abstract]   [Full Text] [Related]  

  • 2. QSAR-based toxicity classification and prediction for single and mixed aromatic compounds.
    Wei DB; Zhai LH; Hu HY
    SAR QSAR Environ Res; 2004 Jun; 15(3):207-16. PubMed ID: 15293547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Study on quantitative relationships between electronic structure and toxicities of phenyl-aldehydes and nitrogen-containing aromatic molecules].
    Xu X; Luo Y; Xiang Y
    Wei Sheng Yan Jiu; 2004 Jan; 33(1):105-7. PubMed ID: 15098492
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantitative structure-activity relationship for aromatic hydrocarbons on freshwater fish.
    Di Marzio W; Saenz ME
    Ecotoxicol Environ Saf; 2004 Oct; 59(2):256-62. PubMed ID: 15327885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative study of four QSAR models of aromatic compounds to aquatic organisms.
    Yu RL; Hu GR; Zhao YH
    J Environ Sci (China); 2002 Oct; 14(4):552-7. PubMed ID: 12491732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of some monocyclic aromatic hydrocarbons on freshwater invertebrates.
    Erben R; Maguire I; Lajtner J; Barcot M; Pisl Z
    Bull Environ Contam Toxicol; 2003 Jan; 70(1):124-30. PubMed ID: 12478434
    [No Abstract]   [Full Text] [Related]  

  • 7. Quantitative structure-activity relationships of nitroaromatics toxicity to the algae (Scenedesmus obliguus).
    Yan XF; Xiao HM; Gong XD; Ju XH
    Chemosphere; 2005 Apr; 59(4):467-71. PubMed ID: 15788169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity assessment of organic pollutants: reliability of bioluminescence inhibition assay and univariate QSAR models using freshly prepared Vibrio fischeri.
    Parvez S; Venkataraman C; Mukherji S
    Toxicol In Vitro; 2008 Oct; 22(7):1806-13. PubMed ID: 18701087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel group contribution method in the development of a QSAR for predicting the toxicity (Vibrio fischeri EC50) of ionic liquids.
    Luis P; Ortiz I; Aldaco R; Irabien A
    Ecotoxicol Environ Saf; 2007 Jul; 67(3):423-9. PubMed ID: 16889829
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach to predict a toxicological property of aromatic compounds in the Tetrahymena pyriformis.
    González MP; Díaz HG; Cabrera MA; Ruiz RM
    Bioorg Med Chem; 2004 Feb; 12(4):735-44. PubMed ID: 14759733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSARs for aromatic hydrocarbons at several trophic levels.
    Di Marzio W; Saenz ME
    Environ Toxicol; 2006 Apr; 21(2):118-24. PubMed ID: 16528686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute toxicity of parabens and their chlorinated by-products with Daphnia magna and Vibrio fischeri bioassays.
    Terasaki M; Makino M; Tatarazako N
    J Appl Toxicol; 2009 Apr; 29(3):242-7. PubMed ID: 19089854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aromatic compounds biodegradation under anaerobic conditions and their QSBR models.
    Yang H; Jiang Z; Shi S
    Sci Total Environ; 2006 Apr; 358(1-3):265-76. PubMed ID: 15907973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of nitroaromatics' composition on their toxicity in vivo: novel, efficient non-additive 1D QSAR analysis.
    Kuz'min VE; Muratov EN; Artemenko AG; Gorb L; Qasim M; Leszczynski J
    Chemosphere; 2008 Jul; 72(9):1373-80. PubMed ID: 18558419
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the toxicity of aromatic compounds to tetrahymena pyriformis: the response surface methodology with nonlinear methods.
    Ren S
    J Chem Inf Comput Sci; 2003; 43(5):1679-87. PubMed ID: 14502503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The proposal of architecture for chemical splitting to optimize QSAR models for aquatic toxicity.
    Colombo A; Benfenati E; Karelson M; Maran U
    Chemosphere; 2008 Jun; 72(5):772-80. PubMed ID: 18471854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Derivation of a chronic reference dose and reference concentration for trimethylbenzenes and C9 aromatic hydrocarbon solvents.
    Firth MJ
    Regul Toxicol Pharmacol; 2008 Dec; 52(3):248-56. PubMed ID: 18809451
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-activity relationships for screening organic chemicals for potential ecotoxicity effects.
    Veith GD; De Foe D; Knuth M
    Drug Metab Rev; 1984-1985; 15(7):1295-303. PubMed ID: 6534729
    [No Abstract]   [Full Text] [Related]  

  • 19. Toxicity of aromatic pollutants and photooxidative intermediates in water: A QSAR study.
    Cvetnic M; Juretic Perisic D; Kovacic M; Ukic S; Bolanca T; Rasulev B; Kusic H; Loncaric Bozic A
    Ecotoxicol Environ Saf; 2019 Mar; 169():918-927. PubMed ID: 30597792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toxicity of jet fuel aliphatic and aromatic hydrocarbon mixtures on human epidermal keratinocytes: evaluation based on in vitro cytotoxicity and interleukin-8 release.
    Yang JH; Lee CH; Monteiro-Riviere NA; Riviere JE; Tsang CL; Chou CC
    Arch Toxicol; 2006 Aug; 80(8):508-23. PubMed ID: 16485121
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.