These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 12678248)

  • 1. Development of serum-free media for cell growth and production of viruses/viral vaccines--safety issues of animal products used in serum-free media.
    Merten OW
    Dev Biol (Basel); 2002; 111():233-57. PubMed ID: 12678248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Safety issues of animal products used in serum-free media.
    Merten OW
    Dev Biol Stand; 1999; 99():167-80. PubMed ID: 10404888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of influenza virus in serum-free mammalian cell cultures.
    Merten OW; Manuguerra JC; Hannoun C; van der Werf S
    Dev Biol Stand; 1999; 98():23-37; discussion 73-4. PubMed ID: 10494957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A microcarrier cell culture process for propagating rabies virus in Vero cells grown in a stirred bioreactor under fully animal component free conditions.
    Rourou S; van der Ark A; van der Velden T; Kallel H
    Vaccine; 2007 May; 25(19):3879-89. PubMed ID: 17307281
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serum-free influenza virus production avoiding washing steps and medium exchange in large-scale microcarrier culture.
    Genzel Y; Fischer M; Reichl U
    Vaccine; 2006 Apr; 24(16):3261-72. PubMed ID: 16472544
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of MDCK cells for production of live attenuated influenza vaccine.
    Liu J; Shi X; Schwartz R; Kemble G
    Vaccine; 2009 Oct; 27(46):6460-3. PubMed ID: 19559113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wave microcarrier cultivation of MDCK cells for influenza virus production in serum containing and serum-free media.
    Genzel Y; Olmer RM; Schäfer B; Reichl U
    Vaccine; 2006 Aug; 24(35-36):6074-87. PubMed ID: 16781022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an animal-component free medium for vero cells culture.
    Rourou S; van der Ark A; van der Velden T; Kallel H
    Biotechnol Prog; 2009; 25(6):1752-61. PubMed ID: 19768803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suspension-Vero cell cultures as a platform for viral vaccine production.
    Paillet C; Forno G; Kratje R; Etcheverrigaray M
    Vaccine; 2009 Oct; 27(46):6464-7. PubMed ID: 19559123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Development of a novel influenza vaccine derived from a continuous cell line].
    Kistner O; Barrett N; Mundt W; Reiter M; Schober-Bendixen S; Eder G; Dorner F
    ALTEX; 2001; 18(1):50-4. PubMed ID: 11248852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a Vero cell-derived influenza whole virus vaccine.
    Kistner O; Barrett PN; Mundt W; Reiter M; Schober-Bendixen S; Eder G; Dorner F
    Dev Biol Stand; 1999; 98():101-10; discussion 111. PubMed ID: 10494963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vaccine production: upstream processing with adherent or suspension cell lines.
    Genzel Y; Rödig J; Rapp E; Reichl U
    Methods Mol Biol; 2014; 1104():371-93. PubMed ID: 24297427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harvesting and concentration of human influenza A virus produced in serum-free mammalian cell culture for the production of vaccines.
    Kalbfuss B; Genzel Y; Wolff M; Zimmermann A; Morenweiser R; Reichl U
    Biotechnol Bioeng; 2007 May; 97(1):73-85. PubMed ID: 16921531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-term stability of Vero cell-derived inactivated Japanese encephalitis vaccine prepared using serum-free medium.
    Toriniwa H; Komiya T
    Vaccine; 2008 Jul; 26(29-30):3680-9. PubMed ID: 18534722
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-free culture of Vero cells: a substrate for replication of human pathogenic viruses.
    Cinatl J; Cinatl J; Rabenau H; Rapp J; Kornhuber B; Doerr HW
    Cell Biol Int; 1993 Sep; 17(9):885-95. PubMed ID: 8220316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The development, benefits and disadvantages of serum-free media.
    Froud SJ
    Dev Biol Stand; 1999; 99():157-66. PubMed ID: 10404887
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation.
    Lohr V; Rath A; Genzel Y; Jordan I; Sandig V; Reichl U
    Vaccine; 2009 Aug; 27(36):4975-82. PubMed ID: 19531390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differences in the glycosylation profile of a monoclonal antibody produced by hybridomas cultured in serum-supplemented, serum-free or chemically defined media.
    Serrato JA; Hernández V; Estrada-Mondaca S; Palomares LA; Ramírez OT
    Biotechnol Appl Biochem; 2007 Jun; 47(Pt 2):113-24. PubMed ID: 17250495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials.
    EFSA GMO Panel Working Group on Animal Feeding Trials
    Food Chem Toxicol; 2008 Mar; 46 Suppl 1():S2-70. PubMed ID: 18328408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple serum-free freezing medium for serum-free cultured cells.
    Merten OW; Petres S; Couvé E
    Biologicals; 1995 Jun; 23(2):185-9. PubMed ID: 7546662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.