BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 1267839)

  • 1. Interaction of aromatic hydrocarbons and drugs with adrenal microsomal cytochrome P-450 in the guinea pig.
    Greiner JW; Kramer RE; Robinson DA; Canady WJ; Colby HD
    Biochem Pharmacol; 1976 Apr; 25(8):951-5. PubMed ID: 1267839
    [No Abstract]   [Full Text] [Related]  

  • 2. Interaction of metyrapone with adrenal microsomal cytochrome P450 in the guinea pig.
    Greiner JW; Kramer RE; Colby HD
    Biochem Pharmacol; 1978; 27(17):2147-51. PubMed ID: 728166
    [No Abstract]   [Full Text] [Related]  

  • 3. Mechanisms responsible for the thermal sensitivity of adrenal microsomal monooxygenases.
    Colby HD; Johnson PB; Pope MR
    Drug Metab Dispos; 1991; 19(3):679-82. PubMed ID: 1680636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The increasing and decreasing effects of aromatic hydrocarbon solvents on pulmonary and hepatic cytochrome P-450 in the rat.
    Pyykkö K; Paavilainen S; Metsä-Ketelä T; Laustiola K
    Pharmacol Toxicol; 1987 Apr; 60(4):288-93. PubMed ID: 3588527
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specificity of the in vitro destruction of adrenal and hepatic microsomal steroid hydroxylases by thiosteroids.
    Menard RH; Guenthner TM; Taburet AM; Kon H; Pohl LR; Gillette JR; Gelboin HV; Trager WF
    Mol Pharmacol; 1979 Nov; 16(3):997-1010. PubMed ID: 119158
    [No Abstract]   [Full Text] [Related]  

  • 6. Regional differences in adrenal activation of spironolactone: relationship to steroid 17 alpha-hydroxylase activity.
    Sherry JH; Johnson PB; Levitt M; Bergstrom J; Colby HD
    Drug Metab Dispos; 1989; 17(6):709-10. PubMed ID: 2575513
    [No Abstract]   [Full Text] [Related]  

  • 7. Comparative study of renal and liver microsomal cytochrome P-450 system in two animal models.
    Yoshimura R; Yoshimura N; Nakatani T; Ohyama A; Miyao Y; Yamamoto K; Kishimoto T
    Transplant Proc; 1994 Oct; 26(5):2915. PubMed ID: 7940921
    [No Abstract]   [Full Text] [Related]  

  • 8. Differential effects of GPA 1851 on hepatic microsomal drug metabolism dependent on dosage and time of sacrifice.
    Vessell ES; Lee CJ; Passananti GT; Shively CA
    Pharmacology; 1972; 8(4):217-21. PubMed ID: 4657973
    [No Abstract]   [Full Text] [Related]  

  • 9. Antioxidants prevent nickel chloride inhibition of cytochrome P450 dependent mixed function oxidation in guinea pig lung microsomes.
    al-Assadi HM; Rodgers EH; Grant MH
    Biochem Soc Trans; 1993 Feb; 21(1):68S. PubMed ID: 8449351
    [No Abstract]   [Full Text] [Related]  

  • 10. Influence of L-ascorbate on the concentrations of microsomal cytochrome P-450 and cytochrome b5 in adrenals, kidneys and spleen of guinea pigs.
    Degkwitz E; Walsch S; Dubberstein M
    Hoppe Seylers Z Physiol Chem; 1974 Sep; 355(9):1152-8. PubMed ID: 4461655
    [No Abstract]   [Full Text] [Related]  

  • 11. Interaction of prostaglandins with adrenal microsomal cytochrome P-450 in the guinea pig.
    Greiner JW; Kramer RE; Colby HD
    Prostaglandins; 1979 Apr; 17(4):587-97. PubMed ID: 461822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Action of n-alkanes on drug-metabolizing enzymes from guinea-pig liver.
    Notten WR; Henderson PT
    Biochem Pharmacol; 1975 May; 24(10):1093-7. PubMed ID: 808226
    [No Abstract]   [Full Text] [Related]  

  • 13. Effects of multiple administration of halothane on the mixed function oxidase system in liver microsomes. Difference between guinea pigs and rats.
    Akita A; Morio M; Kawahara M; Takeshita T; Fujii K
    In Vivo; 1987; 1(6):369-72. PubMed ID: 2979806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of microsomal drug hydroxylation in lung and liver of various species.
    Oppelt WW; Zange M; Ross WE; Remmer H
    Res Commun Chem Pathol Pharmacol; 1970 Jan; 1(1):43-56. PubMed ID: 5524315
    [No Abstract]   [Full Text] [Related]  

  • 15. Cytochrome P-450-linked monooxygenase system and drug-induced spectral interactions in human liver microsomes.
    Pelkonen O; Kaltiala EH; Larmi TK; Kärki NT
    Chem Biol Interact; 1974 Sep; 9(3):205-16. PubMed ID: 4426109
    [No Abstract]   [Full Text] [Related]  

  • 16. Some characteristics of hamster liver and lung microsomal aryl hydrocarbon (biphenyl and benzo(a)pyrene) hydroxylation reactions.
    Burke MD; Prough RA
    Biochem Pharmacol; 1976 Oct; 25(19):2187-95. PubMed ID: 971331
    [No Abstract]   [Full Text] [Related]  

  • 17. Re: ethylbenzene induces microsomal oxygen free radical generation: antibody-directed characterization of the responsible cytochrome p450 enzymes (toxicol. appl. pharmacol. 164, 305-311, 2000).
    Paolini M; Potenza G; Biagi G; Cantelli-Forti G
    Toxicol Appl Pharmacol; 2001 Jun; 173(3):188-9. PubMed ID: 11437640
    [No Abstract]   [Full Text] [Related]  

  • 18. Stimulation of rat hepatic microsomal heme oxygenase by diethyl maleate.
    Burk RF; Correia MA
    Res Commun Chem Pathol Pharmacol; 1979 Apr; 24(1):205-7. PubMed ID: 432437
    [No Abstract]   [Full Text] [Related]  

  • 19. In vitro inhibition of cytochrome P450 enzymes in human liver microsomes by a potent CYP2A6 inhibitor, trans-2-phenylcyclopropylamine (tranylcypromine), and its nonamine analog, cyclopropylbenzene.
    Taavitsainen P; Juvonen R; Pelkonen O
    Drug Metab Dispos; 2001 Mar; 29(3):217-22. PubMed ID: 11181487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hepatic mixed-function oxidase activity in mice treated with methylated benzenes and methylated naphthalenes.
    Fabacher DL; Hodgson E
    J Toxicol Environ Health; 1977 May; 2(5):1143-6. PubMed ID: 864785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.