These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 12678850)

  • 1. Guanidinium rich peptide transporters and drug delivery.
    Wright LR; Rothbard JB; Wender PA
    Curr Protein Pept Sci; 2003 Apr; 4(2):105-24. PubMed ID: 12678850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The design, synthesis, and evaluation of molecules that enable or enhance cellular uptake: peptoid molecular transporters.
    Wender PA; Mitchell DJ; Pattabiraman K; Pelkey ET; Steinman L; Rothbard JB
    Proc Natl Acad Sci U S A; 2000 Nov; 97(24):13003-8. PubMed ID: 11087855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The design of guanidinium-rich transporters and their internalization mechanisms.
    Wender PA; Galliher WC; Goun EA; Jones LR; Pillow TH
    Adv Drug Deliv Rev; 2008 Mar; 60(4-5):452-72. PubMed ID: 18164781
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of peptidomimetic drugs by the intestinal Di/tri-peptide transporter, PepT1.
    Brodin B; Nielsen CU; Steffansen B; Frøkjaer S
    Pharmacol Toxicol; 2002 Jun; 90(6):285-96. PubMed ID: 12403049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-Penetrating, Guanidinium-Rich Oligophosphoesters: Effective and Versatile Molecular Transporters for Drug and Probe Delivery.
    McKinlay CJ; Waymouth RM; Wender PA
    J Am Chem Soc; 2016 Mar; 138(10):3510-7. PubMed ID: 26900771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of membrane potential and hydrogen bonding in the mechanism of translocation of guanidinium-rich peptides into cells.
    Rothbard JB; Jessop TC; Lewis RS; Murray BA; Wender PA
    J Am Chem Soc; 2004 Aug; 126(31):9506-7. PubMed ID: 15291531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Peptoidic amino- and guanidinium-carrier systems: targeted drug delivery into the cell cytosol or the nucleus.
    Schröder T; Niemeier N; Afonin S; Ulrich AS; Krug HF; Bräse S
    J Med Chem; 2008 Feb; 51(3):376-9. PubMed ID: 18215012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Passage of Trojan peptoids into plant cells.
    Eggenberger K; Birtalan E; Schröder T; Bräse S; Nick P
    Chembiochem; 2009 Oct; 10(15):2504-12. PubMed ID: 19739189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptides and Drug Delivery.
    Ulapane KR; Kopec BM; Moral MEG; Siahaan TJ
    Adv Exp Med Biol; 2017; 1030():167-184. PubMed ID: 29081054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mammalian peptide transporters as targets for drug delivery.
    Rubio-Aliaga I; Daniel H
    Trends Pharmacol Sci; 2002 Sep; 23(9):434-40. PubMed ID: 12237156
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular transporters: synthesis of oligoguanidinium transporters and their application to drug delivery and real-time imaging.
    Goun EA; Pillow TH; Jones LR; Rothbard JB; Wender PA
    Chembiochem; 2006 Oct; 7(10):1497-515. PubMed ID: 16972294
    [No Abstract]   [Full Text] [Related]  

  • 12. Guanidinylated neomycin delivers large, bioactive cargo into cells through a heparan sulfate-dependent pathway.
    Elson-Schwab L; Garner OB; Schuksz M; Crawford BE; Esko JD; Tor Y
    J Biol Chem; 2007 May; 282(18):13585-91. PubMed ID: 17311923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of each guanidinium group on the RNA recognition and cellular uptake of Tat-derived peptides.
    Wu CH; Weng MH; Chang HC; Li JH; Cheng RP
    Bioorg Med Chem; 2014 Jun; 22(11):3016-20. PubMed ID: 24767816
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Guanidinium-Rich Polymer for Efficient Cytosolic Delivery of Native Proteins.
    Yu C; Tan E; Xu Y; Lv J; Cheng Y
    Bioconjug Chem; 2019 Feb; 30(2):413-417. PubMed ID: 30383369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transport of drugs by proton-coupled peptide transporters: pearls and pitfalls.
    Brandsch M
    Expert Opin Drug Metab Toxicol; 2009 Aug; 5(8):887-905. PubMed ID: 19519280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective substrates for non-neuronal monoamine transporters.
    Gründemann D; Liebich G; Kiefer N; Köster S; Schömig E
    Mol Pharmacol; 1999 Jul; 56(1):1-10. PubMed ID: 10385678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Translocation properties of novel cell penetrating transportan and penetratin analogues.
    Lindgren M; Gallet X; Soomets U; Hällbrink M; Bråkenhielm E; Pooga M; Brasseur R; Langel U
    Bioconjug Chem; 2000; 11(5):619-26. PubMed ID: 10995204
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Solid-phase synthesis, bioconjugation, and toxicology of novel cationic oligopeptoids for cellular drug delivery.
    Schröder T; Schmitz K; Niemeier N; Balaban TS; Krug HF; Schepers U; Bräse S
    Bioconjug Chem; 2007; 18(2):342-54. PubMed ID: 17326607
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemoselective fragment condensation between peptide and peptidomimetic oligomers.
    Levine PM; Craven TW; Bonneau R; Kirshenbaum K
    Org Biomol Chem; 2013 Jul; 11(25):4142-6. PubMed ID: 23715215
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Peptoid-Peptide hybrid backbone architectures.
    Olsen CA
    Chembiochem; 2010 Jan; 11(2):152-60. PubMed ID: 20017179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.