These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 12678854)
1. Protein Therapy: in vivo protein transduction by polyarginine (11R) PTD and subcellular targeting delivery. Matsui H; Tomizawa K; Lu YF; Matsushita M Curr Protein Pept Sci; 2003 Apr; 4(2):151-7. PubMed ID: 12678854 [TBL] [Abstract][Full Text] [Related]
2. A high-efficiency protein transduction system demonstrating the role of PKA in long-lasting long-term potentiation. Matsushita M; Tomizawa K; Moriwaki A; Li ST; Terada H; Matsui H J Neurosci; 2001 Aug; 21(16):6000-7. PubMed ID: 11487623 [TBL] [Abstract][Full Text] [Related]
3. A protein transduction method using oligo-arginine (3R) for the delivery of transcription factors into cell nuclei. Hitsuda T; Michiue H; Kitamatsu M; Fujimura A; Wang F; Yamamoto T; Han XJ; Tazawa H; Uneda A; Ohmori I; Nishiki T; Tomizawa K; Matsui H Biomaterials; 2012 Jun; 33(18):4665-72. PubMed ID: 22465335 [TBL] [Abstract][Full Text] [Related]
5. Development of p53 protein transduction therapy using membrane-permeable peptides and the application to oral cancer cells. Takenobu T; Tomizawa K; Matsushita M; Li ST; Moriwaki A; Lu YF; Matsui H Mol Cancer Ther; 2002 Oct; 1(12):1043-9. PubMed ID: 12481427 [TBL] [Abstract][Full Text] [Related]
6. HIV-1 TAT-mediated protein transduction and subcellular localization using novel expression vectors. Yang Y; Ma J; Song Z; Wu M FEBS Lett; 2002 Dec; 532(1-2):36-44. PubMed ID: 12459459 [TBL] [Abstract][Full Text] [Related]
7. p53 protein transduction therapy: successful targeting and inhibition of the growth of the bladder cancer cells. Inoue M; Tomizawa K; Matsushita M; Lu YF; Yokoyama T; Yanai H; Takashima A; Kumon H; Matsui H Eur Urol; 2006 Jan; 49(1):161-8. PubMed ID: 16310931 [TBL] [Abstract][Full Text] [Related]
8. The NH2 terminus of influenza virus hemagglutinin-2 subunit peptides enhances the antitumor potency of polyarginine-mediated p53 protein transduction. Michiue H; Tomizawa K; Wei FY; Matsushita M; Lu YF; Ichikawa T; Tamiya T; Date I; Matsui H J Biol Chem; 2005 Mar; 280(9):8285-9. PubMed ID: 15611109 [TBL] [Abstract][Full Text] [Related]
9. [Construction and functional study of a cell penetrating peptide-based expression vector for targeted delivery of proteins into the cell nuclei]. Li HY; Guo AH; Liu ZF; Liu Y; Liu JH; Deng P; Li ZJ; Liu YW; Jiang Y Nan Fang Yi Ke Da Xue Xue Bao; 2006 Oct; 26(10):1394-9, 1407. PubMed ID: 17062334 [TBL] [Abstract][Full Text] [Related]
10. Cell surface adherence and endocytosis of protein transduction domains. Lundberg M; Wikström S; Johansson M Mol Ther; 2003 Jul; 8(1):143-50. PubMed ID: 12842437 [TBL] [Abstract][Full Text] [Related]
11. Characterization of a class of cationic peptides able to facilitate efficient protein transduction in vitro and in vivo. Mi Z; Mai J; Lu X; Robbins PD Mol Ther; 2000 Oct; 2(4):339-47. PubMed ID: 11020349 [TBL] [Abstract][Full Text] [Related]
12. The importance of valency in enhancing the import and cell routing potential of protein transduction domain-containing molecules. Sung M; Poon GM; Gariépy J Biochim Biophys Acta; 2006 Mar; 1758(3):355-63. PubMed ID: 16442074 [TBL] [Abstract][Full Text] [Related]
13. An extranuclear locus of cAMP-dependent protein kinase action is necessary and sufficient for promotion of spiral ganglion neuronal survival by cAMP. Bok J; Zha XM; Cho YS; Green SH J Neurosci; 2003 Feb; 23(3):777-87. PubMed ID: 12574406 [TBL] [Abstract][Full Text] [Related]
14. Cytoplasmic transduction peptide (CTP): new approach for the delivery of biomolecules into cytoplasm in vitro and in vivo. Kim D; Jeon C; Kim JH; Kim MS; Yoon CH; Choi IS; Kim SH; Bae YS Exp Cell Res; 2006 May; 312(8):1277-88. PubMed ID: 16466653 [TBL] [Abstract][Full Text] [Related]
15. Protein transport in human cells mediated by covalently and noncovalently conjugated arginine-rich intracellular delivery peptides. Hu JW; Liu BR; Wu CY; Lu SW; Lee HJ Peptides; 2009 Sep; 30(9):1669-78. PubMed ID: 19524630 [TBL] [Abstract][Full Text] [Related]
16. A peptide carrier for the delivery of biologically active proteins into mammalian cells. Morris MC; Depollier J; Mery J; Heitz F; Divita G Nat Biotechnol; 2001 Dec; 19(12):1173-6. PubMed ID: 11731788 [TBL] [Abstract][Full Text] [Related]
17. Salt-inducible kinase-1 represses cAMP response element-binding protein activity both in the nucleus and in the cytoplasm. Katoh Y; Takemori H; Min L; Muraoka M; Doi J; Horike N; Okamoto M Eur J Biochem; 2004 Nov; 271(21):4307-19. PubMed ID: 15511237 [TBL] [Abstract][Full Text] [Related]
18. Probing the impact of valency on the routing of arginine-rich peptides into eukaryotic cells. Kawamura KS; Sung M; Bolewska-Pedyczak E; Gariépy J Biochemistry; 2006 Jan; 45(4):1116-27. PubMed ID: 16430208 [TBL] [Abstract][Full Text] [Related]
19. Protein transduction method for cerebrovascular disorders. Ogawa T; Ono S; Ichikawa T; Arimitsu S; Onoda K; Tokunaga K; Sugiu K; Tomizawa K; Matsui H; Date I Acta Med Okayama; 2009 Feb; 63(1):1-7. PubMed ID: 19247417 [TBL] [Abstract][Full Text] [Related]
20. Characteristics of HIV-Tat protein transduction domain. Yoon JS; Jung YT; Hong SK; Kim SH; Shin MC; Lee DG; Shin WS; Min WS; Paik SY J Microbiol; 2004 Dec; 42(4):328-35. PubMed ID: 15650690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]