BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 12679099)

  • 41. Proliferation, dispersal and patterned aggregation of iridophores in the skin prefigure striped colouration of zebrafish.
    Singh AP; Schach U; Nüsslein-Volhard C
    Nat Cell Biol; 2014 Jun; 16(6):607-14. PubMed ID: 24776884
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The zebrafish sf3b1b460 mutant reveals differential requirements for the sf3b1 pre-mRNA processing gene during neural crest development.
    An M; Henion PD
    Int J Dev Biol; 2012; 56(4):223-37. PubMed ID: 22562198
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Neural crest survival and differentiation in zebrafish depends on mont blanc/tfap2a gene function.
    Barrallo-Gimeno A; Holzschuh J; Driever W; Knapik EW
    Development; 2004 Apr; 131(7):1463-77. PubMed ID: 14985255
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The MITF paralog tfec is required in neural crest development for fate specification of the iridophore lineage from a multipotent pigment cell progenitor.
    Petratou K; Spencer SA; Kelsh RN; Lister JA
    PLoS One; 2021; 16(1):e0244794. PubMed ID: 33439865
    [TBL] [Abstract][Full Text] [Related]  

  • 45. colgate/hdac1 Repression of foxd3 expression is required to permit mitfa-dependent melanogenesis.
    Ignatius MS; Moose HE; El-Hodiri HM; Henion PD
    Dev Biol; 2008 Jan; 313(2):568-83. PubMed ID: 18068699
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Zebrafish Foxd3 is required for development of a subset of neural crest derivatives.
    Lister JA; Cooper C; Nguyen K; Modrell M; Grant K; Raible DW
    Dev Biol; 2006 Feb; 290(1):92-104. PubMed ID: 16364284
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Fugu tyrp1 promoter directs specific GFP expression in zebrafish: tools to study the RPE and the neural crest-derived melanophores.
    Zou J; Beermann F; Wang J; Kawakami K; Wei X
    Pigment Cell Res; 2006 Dec; 19(6):615-27. PubMed ID: 17083488
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cellular plasticity among axolotl neural crest-derived pigment cell lineages.
    Thibaudeau G; Holder S
    Pigment Cell Res; 1998 Feb; 11(1):38-44. PubMed ID: 9523334
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Distinct interactions of Sox5 and Sox10 in fate specification of pigment cells in medaka and zebrafish.
    Nagao Y; Takada H; Miyadai M; Adachi T; Seki R; Kamei Y; Hara I; Taniguchi Y; Naruse K; Hibi M; Kelsh RN; Hashimoto H
    PLoS Genet; 2018 Apr; 14(4):e1007260. PubMed ID: 29621239
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Pigment cell pattern formation in Taricha torosa: the role of the extracellular matrix in controlling pigment cell migration and differentiation.
    Tucker RP; Erickson CA
    Dev Biol; 1986 Nov; 118(1):268-85. PubMed ID: 3770303
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differentiation of zebrafish melanophores depends on transcription factors AP2 alpha and AP2 epsilon.
    Van Otterloo E; Li W; Bonde G; Day KM; Hsu MY; Cornell RA
    PLoS Genet; 2010 Sep; 6(9):e1001122. PubMed ID: 20862309
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The N-terminal domain of gastrulation brain homeobox 2 (Gbx2) is required for iridophore specification in zebrafish.
    Hozumi S; Shirai M; Wang J; Aoki S; Kikuchi Y
    Biochem Biophys Res Commun; 2018 Jul; 502(1):104-109. PubMed ID: 29787751
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of
    Otsuki Y; Okuda Y; Naruse K; Saya H
    G3 (Bethesda); 2020 Jan; 10(1):311-319. PubMed ID: 31757930
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Bar, stripe and spot development in sand-dwelling cichlids from Lake Malawi.
    Hendrick LA; Carter GA; Hilbrands EH; Heubel BP; Schilling TF; Le Pabic P
    Evodevo; 2019; 10():18. PubMed ID: 31417669
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest.
    Petratou K; Subkhankulova T; Lister JA; Rocco A; Schwetlick H; Kelsh RN
    PLoS Genet; 2018 Oct; 14(10):e1007402. PubMed ID: 30286071
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effects of lithium on pigmentation in the embryonic zebrafish (Brachydanio rerio).
    Jin EJ; Thibaudeau G
    Biochim Biophys Acta; 1999 Feb; 1449(1):93-9. PubMed ID: 10076054
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Zebrafish hybrids suggest genetic mechanisms for pigment pattern diversification in Danio.
    Parichy DM; Johnson SL
    Dev Genes Evol; 2001 Jul; 211(7):319-28. PubMed ID: 11466528
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Phenotypic plasticity of neural crest-derived melanocytes and Schwann cells].
    Dupin E
    Biol Aujourdhui; 2011; 205(1):53-61. PubMed ID: 21501576
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The influence of long-term chromatic adaptation on pigment cells and striped pigment patterns in the skin of the zebrafish, Danio rerio.
    Sugimoto M; Yuki M; Miyakoshi T; Maruko K
    J Exp Zool A Comp Exp Biol; 2005 Jun; 303(6):430-40. PubMed ID: 15880775
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Black, yellow, or silver: which one leads skin pattern formation?
    Kondo S; Watanabe M
    Pigment Cell Melanoma Res; 2015 Jan; 28(1):2-4. PubMed ID: 25367546
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.