These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 1267932)

  • 1. Cooling rate effects in thermoluminescence dosimetry grade lithium flouride. Implications for practical dosimetry.
    Mason EW; McKinlay AF; Clark I
    Phys Med Biol; 1976 Jan; 21(1):60-6. PubMed ID: 1267932
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermoluminescent response of LiF and Li2B4O7:Mn to pions.
    Cooke DW; Hogstrom KR
    Phys Med Biol; 1980 Jul; 25(4):657-66. PubMed ID: 7454755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relative thermoluminescence efficiency of TLD-600 and TLD-700 dosemeters irradiated with 59.8 MeV per nucleon krypton-86 ions.
    Mukherjee B; Ronningen RM; Cross P
    Radiat Prot Dosimetry; 2002; 100(1-4):537-9. PubMed ID: 12382938
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermoluminescence response of LiF to alpha radiation.
    Barber DE; Ahmed AB
    Health Phys; 1986 Jun; 50(6):805-8. PubMed ID: 3710788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity loss of Lif:Mg,Cu,P thermoluminescence dosemeters caused by oven annealing.
    Lüpke M; Goblet F; Polivka B; Seifert H
    Radiat Prot Dosimetry; 2006; 121(2):195-201. PubMed ID: 16464837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The low- and high-temperature response of lithium fluoride dosemeters to X-rays.
    Budd T; Marshall M; Peaple LH; Douglas JA
    Phys Med Biol; 1979 Jan; 24(1):71-80. PubMed ID: 432275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of annealing and cooling processes on thermoluminescence of LiF (TLD100).
    Dhar A; DeWerd LA; Stoebe TG
    Health Phys; 1973 Oct; 25(4):427-33. PubMed ID: 4785420
    [No Abstract]   [Full Text] [Related]  

  • 8. Influence of heating conditions on the thermoluminescence sensitivity of TLD-LiF phosphors.
    Nakajima T; Watanabe S
    Int J Appl Radiat Isot; 1976 Feb; 27(2):113-21. PubMed ID: 1252279
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of short-term sensitivity loss in LiF:Mg,Cu,P thermoluminescent dosemeter and its implications on personnel dosimetry operations.
    Romanyukha A; Delzer JA; Grypp MD; Williams AS
    Radiat Prot Dosimetry; 2016 Feb; 168(2):204-11. PubMed ID: 25767182
    [TBL] [Abstract][Full Text] [Related]  

  • 10. INVESTIGATION OF THE TL CHARACTERISTICS OF COMPOSITE PEAK 5 IN THE GLOW CURVE OF LIF:MG,TI (TLD-100) USING NATURALLY AND FURNACE-COOLED SAMPLES FOLLOWING THE 400°C PRE-IRRADIATION ANNEAL.
    Eliyahu I; Reshes G; Shapiro A; Biderman S; Oster L; Nemirovsky D; Sterenberg M; Ginzburg D; Horowitz YS; Herman B; Assor Y
    Radiat Prot Dosimetry; 2021 Nov; 196(1-2):53-59. PubMed ID: 34463339
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoluminescence dosimetry in the muGy range. Theoretical and experimental investigations of the optimum performance of a LiF-TLD system.
    Spanne P
    Acta Radiol Suppl; 1979; 360():1-118. PubMed ID: 233606
    [No Abstract]   [Full Text] [Related]  

  • 12. LiF and CaF2: Dy thermoluminescent dosimeters.
    Tsuda M; Ohizumi Y; Mori T
    Strahlentherapie; 1980; 156(10):708-13. PubMed ID: 7434378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of cooling rate on the precision of measurement of glow peak 5 in the thermoluminescence of LiF:Mg,Ti (TLD-100).
    Bokobza Y; Biderman S; Horowitz YS; Oster L; Eliyahu I; Shapiro A; Nemirovsky D; Reshes G; Herman B; Einav H
    Radiat Prot Dosimetry; 2024 Mar; 200(4):423-427. PubMed ID: 38195760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study on the susceptibility of LiF:Mg,Ti (TLD-100) and LiF:Mg,Cu,P (TLD-100H) to spurious signals in thermoluminescence dosimetry.
    Al-Haj A; Lagarde C; Mahyoub F
    Radiat Prot Dosimetry; 2007; 125(1-4):399-402. PubMed ID: 17223633
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The re-estimation of absorbed doses of less than 1 rad measured with lithium fluoride thermoluminescent dosemeters.
    Mason EW; McKinlay AF; Saunders D
    Phys Med Biol; 1977 Jan; 22(1):29-35. PubMed ID: 840895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-level gamma-ray dosimetry using common TLD phosphors.
    Lakshmanan AR; Bhatt RC
    Phys Med Biol; 1979 Nov; 24(6):1258-67. PubMed ID: 531099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A high sensitivity LiF thermoluminescent dosimeter--LiF(Mg, Cu, P).
    Wu DK; Sun FY; Dai HC
    Health Phys; 1984 May; 46(5):1063-7. PubMed ID: 6724912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of LiF thermoluminescent dosemeters to 6-18 keV photons.
    Ahmed AB; Barber DE
    Phys Med Biol; 1989 Mar; 34(3):343-52. PubMed ID: 2928389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing an Optimum Protocol for Thermoluminescence Dosimetry with GR-200 Chips using Taguchi Method.
    Sadeghi M; Faghihi R; Sina S
    Radiat Prot Dosimetry; 2017 Jun; 175(2):284-294. PubMed ID: 27885074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Response of LiF:Mg,Ti thermoluminescent dosimeters at photon energies relevant to the dosimetry of brachytherapy (<1 MeV).
    Tedgren AC; Hedman A; Grindborg JE; Carlsson GA
    Med Phys; 2011 Oct; 38(10):5539-50. PubMed ID: 21992372
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.