These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 12679518)

  • 1. Isolation and identification of short nucleotide sequences that affect translation initiation in Saccharomyces cerevisiae.
    Zhou W; Edelman GM; Mauro VP
    Proc Natl Acad Sci U S A; 2003 Apr; 100(8):4457-62. PubMed ID: 12679518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcript leader regions of two Saccharomyces cerevisiae mRNAs contain internal ribosome entry sites that function in living cells.
    Zhou W; Edelman GM; Mauro VP
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1531-6. PubMed ID: 11171985
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing of internal translation initiation via dicistronic constructs in yeast is complicated by production of extraneous transcripts.
    Mäkeläinen KJ; Mäkinen K
    Gene; 2007 Apr; 391(1-2):275-84. PubMed ID: 17331675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cap-dependent and cap-independent translation by internal initiation of mRNAs in cell extracts prepared from Saccharomyces cerevisiae.
    Iizuka N; Najita L; Franzusoff A; Sarnow P
    Mol Cell Biol; 1994 Nov; 14(11):7322-30. PubMed ID: 7935446
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleotide sequence and transcriptional mapping of the yeast pet56-his3-ded1 gene region.
    Struhl K
    Nucleic Acids Res; 1985 Dec; 13(23):8587-601. PubMed ID: 3001645
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo analysis of mutated initiation codons in the mitochondrial COX2 gene of Saccharomyces cerevisiae fused to the reporter gene ARG8m reveals lack of downstream reinitiation.
    Bonnefoy N; Fox TD
    Mol Gen Genet; 2000 Jan; 262(6):1036-46. PubMed ID: 10660064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of two short internal ribosome entry sites selected from libraries of random oligonucleotides.
    Owens GC; Chappell SA; Mauro VP; Edelman GM
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1471-6. PubMed ID: 11171975
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Absolute mRNA levels and transcriptional initiation rates in Saccharomyces cerevisiae.
    Iyer V; Struhl K
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5208-12. PubMed ID: 8643554
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic properties and chromatin structure of the yeast gal regulatory element: an enhancer-like sequence.
    Struhl K
    Proc Natl Acad Sci U S A; 1984 Dec; 81(24):7865-9. PubMed ID: 6096864
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of 3' end formation of the yeast HIS3 mRNA.
    Mahadevan S; Raghunand TR; Panicker S; Struhl K
    Gene; 1997 Apr; 190(1):69-76. PubMed ID: 9185851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Further characterisation of the translational termination-reinitiation signal of the influenza B virus segment 7 RNA.
    Powell ML; Leigh KE; Pöyry TA; Jackson RJ; Brown TD; Brierley I
    PLoS One; 2011 Feb; 6(2):e16822. PubMed ID: 21347434
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A coding region segment is necessary, but not sufficient for rapid decay of the HIS3 mRNA in yeast.
    Herrick D; Jacobson A
    Gene; 1992 May; 114(1):35-41. PubMed ID: 1587483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular genetics in Saccharomyces kluyveri: the HIS3 homolog and its use as a selectable marker gene in S. kluyveri and Saccharomyces cerevisiae.
    Weinstock KG; Strathern JN
    Yeast; 1993 Apr; 9(4):351-61. PubMed ID: 8511965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Picornavirus internal ribosome entry segments: comparison of translation efficiency and the requirements for optimal internal initiation of translation in vitro.
    Borman AM; Bailly JL; Girard M; Kean KM
    Nucleic Acids Res; 1995 Sep; 23(18):3656-63. PubMed ID: 7478993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. mRNA sequences influencing translation and the selection of AUG initiator codons in the yeast Saccharomyces cerevisiae.
    Yun DF; Laz TM; Clements JM; Sherman F
    Mol Microbiol; 1996 Mar; 19(6):1225-39. PubMed ID: 8730865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Starved Saccharomyces cerevisiae cells have the capacity to support internal initiation of translation.
    Paz I; Abramovitz L; Choder M
    J Biol Chem; 1999 Jul; 274(31):21741-5. PubMed ID: 10419487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling.
    Ingolia NT; Ghaemmaghami S; Newman JR; Weissman JS
    Science; 2009 Apr; 324(5924):218-23. PubMed ID: 19213877
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A positive feedback vector for identification of nucleotide sequences that enhance translation.
    Zhou W; Edelman GM; Mauro VP
    Proc Natl Acad Sci U S A; 2005 May; 102(18):6273-8. PubMed ID: 15845766
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient translation of an SSA1-derived heat-shock mRNA in yeast cells limited for cap-binding protein and eIF-4F.
    Barnes CA; MacKenzie MM; Johnston GC; Singer RA
    Mol Gen Genet; 1995 Mar; 246(5):619-27. PubMed ID: 7700235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An mRNA-rRNA base-pairing mechanism for translation initiation in eukaryotes.
    Dresios J; Chappell SA; Zhou W; Mauro VP
    Nat Struct Mol Biol; 2006 Jan; 13(1):30-4. PubMed ID: 16341227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.