These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
312 related articles for article (PubMed ID: 12679887)
21. Pleiotropic role of histone deacetylases in the regulation of human adult erythropoiesis. Yamamura K; Ohishi K; Katayama N; Yu Z; Kato K; Masuya M; Fujieda A; Sugimoto Y; Miyata E; Shibasaki T; Heike Y; Takaue Y; Shiku H Br J Haematol; 2006 Oct; 135(2):242-53. PubMed ID: 16939493 [TBL] [Abstract][Full Text] [Related]
22. [Expansion of erythroid progenitors and CD34+ cells by umbilical cord blood mononuclear cells]. Zhang JX; Mao P Zhongguo Shi Yan Xue Ye Xue Za Zhi; 2005 Jun; 13(3):429-33. PubMed ID: 15972135 [TBL] [Abstract][Full Text] [Related]
23. Flt3 ligand promotes myeloid dendritic cell differentiation of human hematopoietic progenitor cells: possible application for cancer immunotherapy. Harada S; Kimura T; Fujiki H; Nakagawa H; Ueda Y; Itoh T; Yamagishi H; Sonoda Y Int J Oncol; 2007 Jun; 30(6):1461-8. PubMed ID: 17487367 [TBL] [Abstract][Full Text] [Related]
24. Cytokine-mediated erythroid maturation in megakaryoblastic human cell line HU-3. Morgan DA; Class R; Soslau G; Brodsky I Exp Hematol; 1997 Dec; 25(13):1378-85. PubMed ID: 9406997 [TBL] [Abstract][Full Text] [Related]
25. Human CD34(+) and CD34(+)CD38(-) hematopoietic progenitors in sickle cell disease differ phenotypically and functionally from normal and suggest distinct subpopulations that generate F cells. Luck L; Zeng L; Hiti AL; Weinberg KI; Malik P Exp Hematol; 2004 May; 32(5):483-93. PubMed ID: 15145217 [TBL] [Abstract][Full Text] [Related]
26. Low oxygen concentration as a general physiologic regulator of erythropoiesis beyond the EPO-related downstream tuning and a tool for the optimization of red blood cell production ex vivo. Vlaski M; Lafarge X; Chevaleyre J; Duchez P; Boiron JM; Ivanovic Z Exp Hematol; 2009 May; 37(5):573-84. PubMed ID: 19375648 [TBL] [Abstract][Full Text] [Related]
27. In vitro proliferation and differentiation of erythroid progenitors of cord blood. Sakatoku H; Inoue S Stem Cells; 1997; 15(4):268-74. PubMed ID: 9253110 [TBL] [Abstract][Full Text] [Related]
28. Erythroid progenitors differentiate and mature in response to endogenous erythropoietin. Sato T; Maekawa T; Watanabe S; Tsuji K; Nakahata T J Clin Invest; 2000 Jul; 106(2):263-70. PubMed ID: 10903342 [TBL] [Abstract][Full Text] [Related]
29. Ex vivo expansion of megakaryocyte precursors from umbilical cord blood CD34 cells in a closed liquid culture system. Shaw PH; Gilligan D; Wang XM; Thall PF; Corey SJ Biol Blood Marrow Transplant; 2003 Mar; 9(3):151-6. PubMed ID: 12652464 [TBL] [Abstract][Full Text] [Related]
30. Disparate regulation of human fetal erythropoiesis by the microenvironments of the liver and bone marrow. Muench MO; Namikawa R Blood Cells Mol Dis; 2001; 27(2):377-90. PubMed ID: 11259159 [TBL] [Abstract][Full Text] [Related]
31. The synergistic effect of thrombopoietin in erythropoiesis with erythropoietin and/or IL-3 and myelopoiesis with G-CSF or IL-3 from umbilical cord blood cells of full-term neonates. Liang DC; Shih LY; Kuo MC; Chai IJ; Su TH; Chen SH; Liu HC; Shimosaka A Pediatr Hematol Oncol; 2001 Sep; 18(6):383-91. PubMed ID: 11554233 [TBL] [Abstract][Full Text] [Related]
32. An IL-6/IL-6 soluble receptor (IL-6R) hybrid protein (H-IL-6) induces EPO-independent erythroid differentiation in human CD34(+) cells. Baiocchi M; Marcucci I; Rose-John S; Serlupi-Crescenzi O; Biffoni M Cytokine; 2000 Sep; 12(9):1395-9. PubMed ID: 10976001 [TBL] [Abstract][Full Text] [Related]
33. Clonogenicity, gene expression and phenotype during neutrophil versus erythroid differentiation of cytokine-stimulated CD34+ human marrow cells in vitro. Edvardsson L; Dykes J; Olsson ML; Olofsson T Br J Haematol; 2004 Nov; 127(4):451-63. PubMed ID: 15521924 [TBL] [Abstract][Full Text] [Related]
34. Enhancement of proliferation and differentiation of erythroid progenitors by co-transduction of erythropoietin receptor and H-ras cDNAS into single CD34(3+) cord blood cells. Lu L; Ge Y; Li ZH; Dai MS; Broxmeyer HE Bone Marrow Transplant; 2000 Oct; 26(8):817-22. PubMed ID: 11081379 [TBL] [Abstract][Full Text] [Related]
35. In vitro apoptotic cell death during erythroid differentiation. Zamai L; Burattini S; Luchetti F; Canonico B; Ferri P; Melloni E; Gonelli A; Guidotti L; Papa S; Falcieri E Apoptosis; 2004 Mar; 9(2):235-46. PubMed ID: 15004520 [TBL] [Abstract][Full Text] [Related]
36. Flow cytometric analysis of human bone marrow perfusion cultures: erythroid development and relationship with burst-forming units-erythroid. Rogers CE; Bradley MS; Palsson BO; Koller MR Exp Hematol; 1996 Apr; 24(5):597-604. PubMed ID: 8605964 [TBL] [Abstract][Full Text] [Related]
37. Insulin-like growth factor-II: a novel autocrine growth factor modulating the apoptosis and maturation of umbilical cord blood erythroid progenitors. Nagatomo T; Muta K; Ohga S; Ochiai M; Ohshima K; Hara T Exp Hematol; 2008 Apr; 36(4):401-11. PubMed ID: 18261839 [TBL] [Abstract][Full Text] [Related]
38. Co-culture of cord blood CD34(+) cells with human BM mesenchymal stromal cells enhances short-term engraftment of cord blood cells in NOD/SCID mice. Fei XM; Wu YJ; Chang Z; Miao KR; Tang YH; Zhou XY; Wang LX; Pan QQ; Wang CY Cytotherapy; 2007; 9(4):338-47. PubMed ID: 17573609 [TBL] [Abstract][Full Text] [Related]
39. Synergy between erythropoietin and stem cell factor during erythropoiesis can be quantitatively described without co-signaling effects. Wang W; Horner DN; Chen WL; Zandstra PW; Audet J Biotechnol Bioeng; 2008 Apr; 99(5):1261-72. PubMed ID: 17969148 [TBL] [Abstract][Full Text] [Related]
40. Differential effects of human erythroid burst stimulating activity (HuEBSA) on human cord blood burst forming units-erythroid (BFU-Es) as a function of their differentiation state. Rodriguez MH; Arnaud S; Grasset MF; Mouchiroud G; Blanchet JP Cytokine; 1999 Jul; 11(7):485-91. PubMed ID: 10419649 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]