These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 12680665)
21. The hydrolysis product of ICRF-187 promotes iron-catalysed hydroxyl radical production via the Fenton reaction. Thomas C; Vile GF; Winterbourn CC Biochem Pharmacol; 1993 May; 45(10):1967-72. PubMed ID: 8390256 [TBL] [Abstract][Full Text] [Related]
22. Reactions of hydroxyl radical with humic substances: bleaching, mineralization, and production of bioavailable carbon substrates. Goldstone JV; Pullin MJ; Bertilsson S; Voelker BM Environ Sci Technol; 2002 Feb; 36(3):364-72. PubMed ID: 11871550 [TBL] [Abstract][Full Text] [Related]
23. Mechanisms of Sb(III) oxidation by pyrite-induced hydroxyl radicals and hydrogen peroxide. Kong L; Hu X; He M Environ Sci Technol; 2015 Mar; 49(6):3499-505. PubMed ID: 25714842 [TBL] [Abstract][Full Text] [Related]
24. Oxidation of benzoic acid from biomass burning in atmospheric waters. Santos PSM; Cardoso HB; Rocha-Santos TAP; Duarte AC Environ Pollut; 2019 Jan; 244():693-704. PubMed ID: 30384075 [TBL] [Abstract][Full Text] [Related]
25. Introducing saccharic acid as an efficient iron chelate to enhance photo-Fenton degradation of organic contaminants. Subramanian G; Madras G Water Res; 2016 Nov; 104():168-177. PubMed ID: 27522633 [TBL] [Abstract][Full Text] [Related]
26. Carbonate-radical-anions, and not hydroxyl radicals, are the products of the Fenton reaction in neutral solutions containing bicarbonate. Illés E; Mizrahi A; Marks V; Meyerstein D Free Radic Biol Med; 2019 Feb; 131():1-6. PubMed ID: 30458276 [TBL] [Abstract][Full Text] [Related]
27. Impact of radical versus non-radical pathway in the Fenton chemistry on the iron redox cycle in clouds. Deguillaume L; Leriche M; Chaumerliac N Chemosphere; 2005 Jul; 60(5):718-24. PubMed ID: 15963810 [TBL] [Abstract][Full Text] [Related]
28. A new insight into Fenton and Fenton-like processes for water treatment: Part II. Influence of organic compounds on Fe(III)/Fe(II) interconversion and the course of reactions. Jiang C; Gao Z; Qu H; Li J; Wang X; Li P; Liu H J Hazard Mater; 2013 Apr; 250-251():76-81. PubMed ID: 23434482 [TBL] [Abstract][Full Text] [Related]
29. Photochemical behavior of carbon nanotubes in natural waters: reactive oxygen species production and effects on •OH generation by Suwannee River fulvic acid, nitrate, and Fe (III). Zhou L; Zhang Y; Wang Q; Ferronato C; Yang X; Chovelon JM Environ Sci Pollut Res Int; 2016 Oct; 23(19):19520-8. PubMed ID: 27388595 [TBL] [Abstract][Full Text] [Related]
30. Temperature dependence of hydroxyl radical formation in the hv/Fe3+/H2O2 and Fe3+/H2O2 systems. Lee C; Yoon J Chemosphere; 2004 Sep; 56(10):923-34. PubMed ID: 15268958 [TBL] [Abstract][Full Text] [Related]
31. Practical applications of the Fenton reaction to the removal of chlorinated aromatic pollutants. Oxidative degradation of 2,4-dichlorophenol. Detomaso A; Lopez A; Lovecchio G; Mascolo G; Curci R Environ Sci Pollut Res Int; 2003; 10(6):379-84. PubMed ID: 14690028 [TBL] [Abstract][Full Text] [Related]
32. New processes in the environmental chemistry of nitrite. 2. The role of hydrogen peroxide. Vione D; Maurino V; Minero C; Borghesi D; Lucchiari M; Pelizzetti E Environ Sci Technol; 2003 Oct; 37(20):4635-41. PubMed ID: 14594372 [TBL] [Abstract][Full Text] [Related]
33. Characteristic bleaching profiles of cyanine dyes depending on active oxygen species in the controlled Fenton reaction. Nakagawa Y; Hori H; Yamamoto I; Terada H Biol Pharm Bull; 1993 Nov; 16(11):1061-4. PubMed ID: 8312855 [TBL] [Abstract][Full Text] [Related]
34. Inhibition of Fe(2+)- and Fe(3+)- induced hydroxyl radical production by the iron-chelating drug deferiprone. Timoshnikov VA; Kobzeva TV; Polyakov NE; Kontoghiorghes GJ Free Radic Biol Med; 2015 Jan; 78():118-22. PubMed ID: 25451643 [TBL] [Abstract][Full Text] [Related]
35. Iron-catalyzed oxidation of arsenic(III) by oxygen and by hydrogen peroxide: pH-dependent formation of oxidants in the Fenton reaction. Hug SJ; Leupin O Environ Sci Technol; 2003 Jun; 37(12):2734-42. PubMed ID: 12854713 [TBL] [Abstract][Full Text] [Related]
36. Inhibition of BPA degradation by serum as a hydroxyl radical scavenger and an Fe trapping agent in Fenton process. Sajiki J; Masumizu T Chemosphere; 2004 Oct; 57(4):241-52. PubMed ID: 15312722 [TBL] [Abstract][Full Text] [Related]
37. Ferryl Ion in the Photo-Fenton Process at Acidic pH: Occurrence, Fate, and Implications. Deng G; Wang Z; Ma J; Jiang J; He D; Li X; Szczuka A; Zhang Z Environ Sci Technol; 2023 Nov; 57(47):18586-18596. PubMed ID: 36912755 [TBL] [Abstract][Full Text] [Related]
38. Mineralization of metoprolol by electro-Fenton and photoelectro-Fenton processes. Isarain-Chávez E; Garrido JA; Rodríguez RM; Centellas F; Arias C; Cabot PL; Brillas E J Phys Chem A; 2011 Feb; 115(7):1234-42. PubMed ID: 21288029 [TBL] [Abstract][Full Text] [Related]
39. Kinetics and mechanism of carbamazepine degradation by a modified Fenton-like reaction with ferric-nitrilotriacetate complexes. Sun SP; Zeng X; Lemley AT J Hazard Mater; 2013 May; 252-253():155-65. PubMed ID: 23518173 [TBL] [Abstract][Full Text] [Related]
40. Mineralization of sulfamethizole in photo-Fenton and photo-Fenton-like systems. Wu CH; Wu JT; Lin YH Water Sci Technol; 2016; 73(4):746-50. PubMed ID: 26901716 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]