These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 12680669)
1. Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina. Koschorreck M; Wendt-Potthoff K; Geller W Environ Sci Technol; 2003 Mar; 37(6):1159-62. PubMed ID: 12680669 [TBL] [Abstract][Full Text] [Related]
2. Functional groups and activities of bacteria in a highly acidic volcanic mountain stream and lake in Patagonia, Argentina. Wendt-Potthoff K; Koschorreck M Microb Ecol; 2002 Jan; 43(1):92-106. PubMed ID: 11984632 [TBL] [Abstract][Full Text] [Related]
3. Importance of different physiological groups of iron reducing microorganisms in an acidic mining lake remediation experiment. Porsch K; Meier J; Kleinsteuber S; Wendt-Potthoff K Microb Ecol; 2009 May; 57(4):701-17. PubMed ID: 19277769 [TBL] [Abstract][Full Text] [Related]
4. Enrichment and isolation of acid-tolerant sulfate-reducing microorganisms in the anoxic, acidic hot spring sediments from Copahue volcano, Argentina. Willis G; Nancucheo I; Hedrich S; Giaveno A; Donati E; Johnson DB FEMS Microbiol Ecol; 2019 Dec; 95(12):. PubMed ID: 31665270 [TBL] [Abstract][Full Text] [Related]
5. [Microbial sulfate reduction in sediments of the coastal zone and littoral of the Kandalaksha bay of the White sea]. Savvichev AS; Rusanov II; Iusupov SK; Baĭramov IT; Pimenov NV; Lein AIu; Ivanov MV Mikrobiologiia; 2003; 72(4):535-46. PubMed ID: 14526546 [TBL] [Abstract][Full Text] [Related]
6. A model of microbial activity in lake sediments in response to periodic water-column mixing. Gantzer CJ; Stefan HG Water Res; 2003 Jul; 37(12):2833-46. PubMed ID: 12767287 [TBL] [Abstract][Full Text] [Related]
7. Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in Arctic marine sediments. Knoblauch C; Jørgensen BB; Harder J Appl Environ Microbiol; 1999 Sep; 65(9):4230-3. PubMed ID: 10473441 [TBL] [Abstract][Full Text] [Related]
8. Reductive dehalogenation of halomethanes in iron- and sulfate-reducing sediments. 1. Reactivity pattern analysis. Kenneke JF; Weber EI Environ Sci Technol; 2003 Feb; 37(4):713-20. PubMed ID: 12636269 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities. Hamdan HZ; Salam DA; Hari AR; Semerjian L; Saikaly P Sci Total Environ; 2017 Jan; 575():1453-1461. PubMed ID: 27720249 [TBL] [Abstract][Full Text] [Related]
10. Kinetics of sulfate reduction and sulfide precipitation rates in sediments of a bar-built estuary (Pescadero, California). Richards CM; Pallud C Water Res; 2016 May; 94():86-102. PubMed ID: 26925545 [TBL] [Abstract][Full Text] [Related]
11. Sulfidogenesis under extremely haloalkaline conditions in soda lakes of Kulunda Steppe (Altai, Russia). Sorokin DY; Rusanov II; Pimenov NV; Tourova TP; Abbas B; Muyzer G FEMS Microbiol Ecol; 2010 Aug; 73(2):278-90. PubMed ID: 20500526 [TBL] [Abstract][Full Text] [Related]
12. Evidence for syntrophic butyrate metabolism under sulfate-reducing conditions in a hydrocarbon-contaminated aquifer. Struchtemeyer CG; Duncan KE; McInerney MJ FEMS Microbiol Ecol; 2011 May; 76(2):289-300. PubMed ID: 21223338 [TBL] [Abstract][Full Text] [Related]
13. Processes at the sediment water interface after addition of organic matter and lime to an Acid Mine Pit Lake mesocosm. Koschorreck M; Bozau E; Frömmichen R; Geller W; Herzsprung P; Wendt-Potthoff K Environ Sci Technol; 2007 Mar; 41(5):1608-14. PubMed ID: 17396649 [TBL] [Abstract][Full Text] [Related]
14. Sulfate reduction and methanogenesis in sediments of Mtoni mangrove forest, Tanzania. Lyimo TJ; Pol A; Op den Camp HJ Ambio; 2002 Dec; 31(7-8):614-6. PubMed ID: 12572833 [No Abstract] [Full Text] [Related]
15. Effects of imposed salinity gradients on dissimilatory arsenate reduction, sulfate reduction, and other microbial processes in sediments from two California soda lakes. Kulp TR; Han S; Saltikov CW; Lanoil BD; Zargar K; Oremland RS Appl Environ Microbiol; 2007 Aug; 73(16):5130-7. PubMed ID: 17601810 [TBL] [Abstract][Full Text] [Related]
16. Effects of sediment resuspension on the oxidation of acid-volatile sulfides and release of metals (iron, manganese, zinc) in Pescadero estuary (CA, USA). Richards CM; van Puffelen JL; Pallud C Environ Toxicol Chem; 2018 Apr; 37(4):993-1006. PubMed ID: 29168891 [TBL] [Abstract][Full Text] [Related]
18. Stable isotope biogeochemistry of the sulfur cycle in modern marine sediments: I. Seasonal dynamics in a temperate intertidal sandy surface sediment. Böttcher M; Hespenheide B; Brumsack HJ; Bosselmann K Isotopes Environ Health Stud; 2004 Dec; 40(4):267-83. PubMed ID: 15621745 [TBL] [Abstract][Full Text] [Related]
19. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Satoh H; Odagiri M; Ito T; Okabe S Water Res; 2009 Oct; 43(18):4729-39. PubMed ID: 19709714 [TBL] [Abstract][Full Text] [Related]
20. Microbial diversity in sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. Dong H; Zhang G; Jiang H; Yu B; Chapman LR; Lucas CR; Fields MW Microb Ecol; 2006 Jan; 51(1):65-82. PubMed ID: 16400537 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]