These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 12680670)

  • 1. Distribution and early diagenesis of antimony species in sediments and porewaters of freshwater lakes.
    Chen YW; Deng TL; Filella M; Belzile N
    Environ Sci Technol; 2003 Mar; 37(6):1163-8. PubMed ID: 12680670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The competitive role of organic carbon and dissolved sulfide in controlling the distribution of mercury in freshwater lake sediments.
    Belzile N; Lang CY; Chen YW; Wang M
    Sci Total Environ; 2008 Nov; 405(1-3):226-38. PubMed ID: 18657305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seasonal mobility of antimony in sediment-water systems in algae- and macrophyte-dominated zones of Lake Taihu (China).
    Ren M; Wang D; Ding S; Yang L; Xu S; Yang C; Wang Y; Zhang C
    Chemosphere; 2019 May; 223():108-116. PubMed ID: 30772589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusive Gradients in Thin Films Reveals Differences in Antimony and Arsenic Mobility in a Contaminated Wetland Sediment during an Oxic-Anoxic Transition.
    Arsic M; Teasdale PR; Welsh DT; Johnston SG; Burton ED; Hockmann K; Bennett WW
    Environ Sci Technol; 2018 Feb; 52(3):1118-1127. PubMed ID: 29303570
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbiological reduction of Sb(V) in anoxic freshwater sediments.
    Kulp TR; Miller LG; Braiotta F; Webb SM; Kocar BD; Blum JS; Oremland RS
    Environ Sci Technol; 2014; 48(1):218-26. PubMed ID: 24274659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on antimony mobility in a contaminated shallow lake sediment using the diffusive gradients in thin films technique.
    Yao C; Che F; Jiang X; Wu Z; Chen J; Wang K
    Chemosphere; 2021 Mar; 267():128913. PubMed ID: 33246702
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimony speciation and potential ecological risk of metal(loid)s in plain wetlands in the lower Yangtze River valley, China.
    Yao C; Jiang X; Che F; Wang K; Zhao L
    Chemosphere; 2019 Mar; 218():1114-1121. PubMed ID: 30609490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antimony as a global dilemma: Geochemistry, mobility, fate and transport.
    Herath I; Vithanage M; Bundschuh J
    Environ Pollut; 2017 Apr; 223():545-559. PubMed ID: 28190688
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spatial distribution of antimony and arsenic levels in Manadas Creek, an urban tributary of the Rio Grande in Laredo, Texas.
    Baeza M; Ren J; Krishnamurthy S; Vaughan TC
    Arch Environ Contam Toxicol; 2010 Feb; 58(2):299-314. PubMed ID: 19629573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling coupled kinetics of antimony adsorption/desorption and oxidation on manganese oxides.
    Shi Z; Peng S; Wang P; Sun Q; Wang Y; Lu G; Dang Z
    Environ Sci Process Impacts; 2018 Dec; 20(12):1691-1696. PubMed ID: 30283955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depositional influences on porewater arsenic in sediments of a mining-contaminated freshwater lake.
    Toevs G; Morra MJ; Winowiecki L; Strawn D; Polizzotto ML; Fendorf S
    Environ Sci Technol; 2008 Sep; 42(18):6823-9. PubMed ID: 18853795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Speciation and bioavailability of selenium and antimony in non-flooded and wetland soils: a review.
    Nakamaru YM; Altansuvd J
    Chemosphere; 2014 Sep; 111():366-71. PubMed ID: 24997941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processes controlling manganese distributions and associations in organic-rich freshwater aquatic systems: the example of Loch Bradan, Scotland.
    Graham MC; Gavin KG; Kirika A; Farmer JG
    Sci Total Environ; 2012 May; 424():239-50. PubMed ID: 22436664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ speciation of dissolved inorganic antimony in surface waters and sediment porewaters: development of a thiol-based diffusive gradients in thin films technique for Sb(III).
    Bennett WW; Arsic M; Welsh DT; Teasdale PR
    Environ Sci Process Impacts; 2016 Aug; 18(8):992-8. PubMed ID: 27192548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enrichment assessment of Sb and trace metals in sediments with significant variability of background concentration in detailed scale.
    Mao L; Ye H; Li F; Yang M; Tao H; Wen H
    Environ Sci Pollut Res Int; 2019 Jan; 26(3):2794-2805. PubMed ID: 30488244
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of antimony release from lacustrine sediments with increasing temperature.
    Liu Z; Song L; Yan W; Chen M; Zhong Z; Li C
    Environ Pollut; 2023 Apr; 323():121301. PubMed ID: 36804564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of aeration on hydrophobic organic contaminant distribution and diffusive flux in estuarine sediments.
    Lin CH; Pedersen JA; Suffet IH
    Environ Sci Technol; 2003 Aug; 37(16):3547-54. PubMed ID: 12953864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Redox processes in pore water of anoxic sediments with shallow gas.
    Ramírez-Pérez AM; de Blas E; García-Gil S
    Sci Total Environ; 2015 Dec; 538():317-26. PubMed ID: 26312406
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Sb(III) with iron sulfide under anoxic conditions: Similarities and differences compared to As(III) interactions.
    Han YS; Seong HJ; Chon CM; Park JH; Nam IH; Yoo K; Ahn JS
    Chemosphere; 2018 Mar; 195():762-770. PubMed ID: 29289022
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assessing the remobilization of Antimony in sediments by DGT: A case study in a tributary of the Three Gorges Reservoir.
    Gao L; Gao B; Zhou H; Xu D; Wang Q; Yin S
    Environ Pollut; 2016 Jul; 214():600-607. PubMed ID: 27131820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.