These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 12680670)
21. Adsorption of antimony(V) onto Mn(II)-enriched surfaces of manganese-oxide and FeMn binary oxide. Liu R; Xu W; He Z; Lan H; Liu H; Qu J; Prasai T Chemosphere; 2015 Nov; 138():616-24. PubMed ID: 26218341 [TBL] [Abstract][Full Text] [Related]
22. Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions. Chen M; Ding S; Wu Y; Fan X; Jin Z; Tsang DCW; Wang Y; Zhang C Environ Pollut; 2019 Mar; 246():472-481. PubMed ID: 30583155 [TBL] [Abstract][Full Text] [Related]
23. Distribution and migration of antimony and other trace elements in a Karstic river system, Southwest China. Li L; Liu H; Li H Environ Sci Pollut Res Int; 2018 Oct; 25(28):28061-28074. PubMed ID: 30066079 [TBL] [Abstract][Full Text] [Related]
24. Environmental geochemistry of antimony in Chinese coals. Qi C; Liu G; Chou CL; Zheng L Sci Total Environ; 2008 Jan; 389(2-3):225-34. PubMed ID: 17936877 [TBL] [Abstract][Full Text] [Related]
25. Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage. Torres E; Ayora C; Canovas CR; García-Robledo E; Galván L; Sarmiento AM Sci Total Environ; 2013 Sep; 461-462():416-29. PubMed ID: 23747557 [TBL] [Abstract][Full Text] [Related]
26. Methylantimony and -arsenic species in sediment pore water tested with the sediment or fauna incubation experiment. Duester L; Vink JP; Hirner AV Environ Sci Technol; 2008 Aug; 42(16):5866-71. PubMed ID: 18767637 [TBL] [Abstract][Full Text] [Related]
27. Partitioning behavior and ecological risk of arsenic and antimony in the sediment-porewater profile system in the Three Gorges Reservoir, China. Gao L; Lu J; Xu D; Wan X; Gao B Chemosphere; 2022 Aug; 300():134409. PubMed ID: 35390413 [TBL] [Abstract][Full Text] [Related]
28. Mobilisation and transport of arsenic and antimony in the adjacent environment of Yata gold mine, Guizhou province, China. Zhang G; Liu CQ; Liu H; Hu J; Han G; Li L J Environ Monit; 2009 Sep; 11(9):1570-8. PubMed ID: 19724824 [TBL] [Abstract][Full Text] [Related]
29. Correlating microbial community profiles with geochemical conditions in a watershed heavily contaminated by an antimony tailing pond. Xiao E; Krumins V; Tang S; Xiao T; Ning Z; Lan X; Sun W Environ Pollut; 2016 Aug; 215():141-153. PubMed ID: 27182975 [TBL] [Abstract][Full Text] [Related]
30. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume. Lorah MM; Cozzarelli IM; Böhlke JK J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178 [TBL] [Abstract][Full Text] [Related]
31. Implication of organic matter on arsenic and antimony sequestration in sediment: evidence from Sundarban mangrove forest, India. Mandal SK; Ray R; Chowdhury C; Majumder N; Jana TK Bull Environ Contam Toxicol; 2013 Apr; 90(4):451-5. PubMed ID: 23299951 [TBL] [Abstract][Full Text] [Related]
32. Development and validation of HPLC-ICP-MS method for the determination inorganic Cr, As and Sb speciation forms and its application for Pławniowice reservoir (Poland) water and bottom sediments variability study. Jabłońska-Czapla M; Szopa S; Grygoyć K; Łyko A; Michalski R Talanta; 2014 Mar; 120():475-83. PubMed ID: 24468399 [TBL] [Abstract][Full Text] [Related]
33. Comparison of antimony and arsenic behaviour at the river-lake junction in the middle of the Yangtze River Basin. Liu H; Zeng W; Lai Z; He M; Lin C; Ouyang W; Liu X J Environ Sci (China); 2024 Feb; 136():189-200. PubMed ID: 37923429 [TBL] [Abstract][Full Text] [Related]
34. Diagenetic transformation of dissolved organic nitrogen compounds under contrasting sedimentary redox conditions in the Black Sea. Schmidt F; Koch BP; Elvert M; Schmidt G; Witt M; Hinrichs KU Environ Sci Technol; 2011 Jun; 45(12):5223-9. PubMed ID: 21568317 [TBL] [Abstract][Full Text] [Related]
35. Influence of the Chemical Form of Antimony on Soil Microbial Community Structure and Arsenite Oxidation Activity. Kataoka T; Mitsunobu S; Hamamura N Microbes Environ; 2018 Jul; 33(2):214-221. PubMed ID: 29887548 [TBL] [Abstract][Full Text] [Related]
36. Zero-valent sulfur and metal speciation in sediment porewaters of freshwater lakes. Wang F; Tessier A Environ Sci Technol; 2009 Oct; 43(19):7252-7. PubMed ID: 19848130 [TBL] [Abstract][Full Text] [Related]
37. Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study. Li J; Liu M; Tong L; Zhou Y; Kong L J Hazard Mater; 2024 Oct; 478():135598. PubMed ID: 39178781 [TBL] [Abstract][Full Text] [Related]
38. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system. Johnston SG; Bennett WW; Doriean N; Hockmann K; Karimian N; Burton ED Sci Total Environ; 2020 Mar; 710():136354. PubMed ID: 32050372 [TBL] [Abstract][Full Text] [Related]
39. Effects of cyclic changes in pH and salinity on metals release from sediments. Hong YS; Kinney KA; Reible DD Environ Toxicol Chem; 2011 Aug; 30(8):1775-84. PubMed ID: 21590797 [TBL] [Abstract][Full Text] [Related]
40. Porewater dynamics of silver, lead and copper in coastal sediments and implications for benthic metal fluxes. Kalnejais LH; Martin WR; Bothner MH Sci Total Environ; 2015 Jun; 517():178-94. PubMed ID: 25727674 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]