BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 12680730)

  • 1. Interstitial stress and fluid pressure within a growing tumor.
    Sarntinoranont M; Rooney F; Ferrari M
    Ann Biomed Eng; 2003 Mar; 31(3):327-35. PubMed ID: 12680730
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.
    Wu M; Frieboes HB; McDougall SR; Chaplain MA; Cristini V; Lowengrub J
    J Theor Biol; 2013 Mar; 320():131-51. PubMed ID: 23220211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of microvascular distribution and its density on interstitial fluid pressure in solid tumors: A computational model.
    Mohammadi M; Chen P
    Microvasc Res; 2015 Sep; 101():26-32. PubMed ID: 26093178
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery.
    Netti PA; Baxter LT; Boucher Y; Skalak R; Jain RK
    Cancer Res; 1995 Nov; 55(22):5451-8. PubMed ID: 7585615
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Poroelasticity Theory Approach to Study the Mechanisms Leading to Elevated Interstitial Fluid Pressure in Solid Tumours.
    Burazin A; Drapaca CS; Tenti G; Sivaloganathan S
    Bull Math Biol; 2018 May; 80(5):1172-1194. PubMed ID: 29282596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection.
    Baxter LT; Jain RK
    Microvasc Res; 1989 Jan; 37(1):77-104. PubMed ID: 2646512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Solid Mechanics of Cancer and Strategies for Improved Therapy.
    Stylianopoulos T
    J Biomech Eng; 2017 Feb; 139(2):. PubMed ID: 27760260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of interstitial pressure on therapeutic agent transport: coupling with the tumor blood and lymphatic vascular systems.
    Wu M; Frieboes HB; Chaplain MA; McDougall SR; Cristini V; Lowengrub JS
    J Theor Biol; 2014 Aug; 355():194-207. PubMed ID: 24751927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transport of fluid and macromolecules in tumors. III. Role of binding and metabolism.
    Baxter LT; Jain RK
    Microvasc Res; 1991 Jan; 41(1):5-23. PubMed ID: 2051954
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coevolution of solid stress and interstitial fluid pressure in tumors during progression: implications for vascular collapse.
    Stylianopoulos T; Martin JD; Snuderl M; Mpekris F; Jain SR; Jain RK
    Cancer Res; 2013 Jul; 73(13):3833-41. PubMed ID: 23633490
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In silico investigations of intratumoral heterogeneous interstitial fluid pressure.
    Waldeland JO; Gaustad JV; Rofstad EK; Evje S
    J Theor Biol; 2021 Oct; 526():110787. PubMed ID: 34087266
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between elevated interstitial fluid pressure and blood flow in tumors: a bioengineering analysis.
    Milosevic MF; Fyles AW; Hill RP
    Int J Radiat Oncol Biol Phys; 1999 Mar; 43(5):1111-23. PubMed ID: 10192363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting stress and interstitial fluid pressure in tumors based on biphasic theory.
    Dwairy M; Reddy JN; Righetti R
    Comput Biol Med; 2023 Dec; 167():107651. PubMed ID: 37931527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of neuroblastoma xenograft in rat flank. I. Growth, interstitial fluid pressure, and interstitial fluid velocity distribution profiles.
    DiResta GR; Lee J; Larson SM; Arbit E
    Microvasc Res; 1993 Sep; 46(2):158-77. PubMed ID: 8246816
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal therapy induced fluid pressure and stress reductions in a solid tumor.
    Jin ZH
    Microvasc Res; 2022 Jan; 139():104250. PubMed ID: 34516982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor angiogenesis and interstitial hypertension.
    Boucher Y; Leunig M; Jain RK
    Cancer Res; 1996 Sep; 56(18):4264-6. PubMed ID: 8797602
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism.
    Moghadam MC; Deyranlou A; Sharifi A; Niazmand H
    Microvasc Res; 2015 Sep; 101():62-71. PubMed ID: 26122936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrodynamics and convection enhanced macromolecular fluid transport in soft biological tissues: Application to solid tumor.
    Dey B; Sekhar GPR
    J Theor Biol; 2016 Apr; 395():62-86. PubMed ID: 26851443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A computational model of glioma reveals opposing, stiffness-sensitive effects of leaky vasculature and tumor growth on tissue mechanical stress and porosity.
    Rey JA; Ewing JR; Sarntinoranont M
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1981-2000. PubMed ID: 34363553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluid transport in vascularized tumours and metastasis.
    Sleeman BD; Nimmo HR
    IMA J Math Appl Med Biol; 1998 Mar; 15(1):53-63. PubMed ID: 9549906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.