These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 12680752)

  • 41. Multiplexed GTPase and GEF biosensor imaging enables network connectivity analysis.
    Marston DJ; Vilela M; Huh J; Ren J; Azoitei ML; Glekas G; Danuser G; Sondek J; Hahn KM
    Nat Chem Biol; 2020 Aug; 16(8):826-833. PubMed ID: 32424303
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Probing the binding states of GDP to Cdc42 using urea interaction.
    Zhao J; Cheng Y; Wang Z; Wang J
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1276-82. PubMed ID: 11883956
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Determination of in vivo dissociation constant, KD, of Cdc42-effector complexes in live mammalian cells using single wavelength fluorescence cross-correlation spectroscopy.
    Sudhaharan T; Liu P; Foo YH; Bu W; Lim KB; Wohland T; Ahmed S
    J Biol Chem; 2009 May; 284(20):13602-13609. PubMed ID: 19293156
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Two-Tiered Mechanism Enables Localized Cdc42 Signaling during Enterocyte Polarization.
    Bruurs LJM; Zwakenberg S; van der Net MC; Zwartkruis FJ; Bos JL
    Mol Cell Biol; 2017 Apr; 37(7):. PubMed ID: 28069739
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Development of a fluorogenic sensor for activated Cdc42.
    Goguen BN; Loving GS; Imperiali B
    Bioorg Med Chem Lett; 2011 Sep; 21(17):5058-61. PubMed ID: 21549598
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Spatial analysis of Cdc42 activity reveals a role for plasma membrane-associated Cdc42 in centrosome regulation.
    Herrington KA; Trinh AL; Dang C; O'Shaughnessy E; Hahn KM; Gratton E; Digman MA; Sütterlin C
    Mol Biol Cell; 2017 Jul; 28(15):2135-2145. PubMed ID: 28539409
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Imaging and photobleach correction of Mero-CBD, sensor of endogenous Cdc42 activation.
    Hodgson L; Nalbant P; Shen F; Hahn K
    Methods Enzymol; 2006; 406():140-56. PubMed ID: 16472656
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Imaging dynamic molecular signaling by the Cdc42 GTPase within the developing CNS.
    Sharifai N; Samarajeewa H; Kamiyama D; Deng TC; Boulina M; Chiba A
    PLoS One; 2014; 9(2):e88870. PubMed ID: 24586421
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Quantitative imaging using genetically encoded sensors for small molecules in plants.
    Okumoto S
    Plant J; 2012 Apr; 70(1):108-17. PubMed ID: 22449046
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Protein transduction as a means of effective manipulation of Cdc42 activity in primary T cells.
    Tskvitaria-Fuller I; Mistry N; Sun S; Wülfing C
    J Immunol Methods; 2007 Jan; 319(1-2):64-78. PubMed ID: 17188290
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Rapid, randomized development of genetically encoded FRET sensors for small molecules.
    Peroza EA; Boumezbeur AH; Zamboni N
    Analyst; 2015 Jul; 140(13):4540-8. PubMed ID: 25988853
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differential modulation of collybistin conformational dynamics by the closely related GTPases Cdc42 and TC10.
    Imam N; Choudhury S; Heinze KG; Schindelin H
    Front Synaptic Neurosci; 2022; 14():959875. PubMed ID: 35989712
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A new genetically encoded single-chain biosensor for Cdc42 based on FRET, useful for live-cell imaging.
    Hanna S; Miskolci V; Cox D; Hodgson L
    PLoS One; 2014; 9(5):e96469. PubMed ID: 24798463
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Endogenous activation patterns of Cdc42 GTPase within Drosophila embryos.
    Kamiyama D; Chiba A
    Science; 2009 Jun; 324(5932):1338-40. PubMed ID: 19498173
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Exploring the mechanism of flexible biomolecular recognition with single molecule dynamics.
    Lu Q; Lu HP; Wang J
    Phys Rev Lett; 2007 Mar; 98(12):128105. PubMed ID: 17501161
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Converting a binding protein into a biosensing conformational switch using protein fragment exchange.
    Zheng H; Bi J; Krendel M; Loh SN
    Biochemistry; 2014 Sep; 53(34):5505-14. PubMed ID: 25084233
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Visualization of the Activity of Rac1 Small GTPase in a Cell.
    Higashi M; Yu J; Tsuchiya H; Saito T; Oyama T; Kawana H; Kitagawa M; Tamaru J; Harigaya K
    Acta Histochem Cytochem; 2010 Dec; 43(6):163-8. PubMed ID: 21245983
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CUTie2: The Attack of the Cyclic Nucleotide Sensor Clones.
    Klein F; Sardi F; Machado MR; Ortega C; Comini MA; Pantano S
    Front Mol Biosci; 2021; 8():629773. PubMed ID: 33778003
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Real-Time Monitoring of Selenium in Living Cells by Fluorescence Resonance Energy Transfer-Based Genetically Encoded Ratiometric Nanosensors.
    Bano R; Mohsin M; Zeyaullah M; Khan MS
    ACS Omega; 2023 Mar; 8(9):8625-8633. PubMed ID: 36910985
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Signaling networks: the origins of cellular multitasking.
    Jordan JD; Landau EM; Iyengar R
    Cell; 2000 Oct; 103(2):193-200. PubMed ID: 11057893
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.